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Abstract

1. Some basic concepts in Probability Theory and Information Theory

2. Filtering, Control and Thermodynamics

Interaction of Communication and Control

3. Stochastic Linear Dynamical Systems. Kalman Filtering from the

Innovations viewpoint.

Separation Theorem

4. Dissipative Systems (J.C. Willems). Kalman Filter as an Informally

Dissipative System. Information Optimality of the Kalman Filter.
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Introduction

• Problems of Control where Sensors, Actuators and Controllers are

linked via Noisy, Communication Channels

• Information Theory

• Stochastic Control with Partial Observations (Dynamics

Programming)

• Fundamental Limitations: Noisy Channel Coding Theorem

• LQG: Irreducible error

• Stablilization



• Energy Harvesting

• Recover Energy from Vibrating Motion

• Monitoring and Sensor Networks

• Integration of Physics, Information, Control and Computation





Dissipative Dynamical System (Willems)

: Dynamical Systems

(Soln. of state space system with read out map)

w(t) = w(u(t), y(t)) , integrable Supply rate

Definition:

A dynamical system with supply rate w is said to be

dissipative if ∀ nonnegative function S : X → R
†, called the

“storage function” such that ∀ (t1, t0) ∈ R
†
2, x0 ∈ X and

u ∈ U

S(x0) +
∫ t1

t0
w(t)dt ≥ S(x1)

where x1 = ϕ(t1, t0;x0, u) and w(t) = w(u(t), y(t)) and

y = y(t0, x0, u).
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Maximum Work Extraction and

Implementation Costs for

Non-equilibrium Maxwell’s Demons

by H. Sandberg, J.-C. Delvenne,

N.J. Newton and S.K. Mitter

in Physical Review E 90 042119 (2014)

2



Maximum work extraction and implementation

costs for non-equilibrium Maxwell’s demons

Ever since Maxwell [1] put forward the idea of an

abstract being (a demon) apparently able to

break the second law of thermodynamics, it has

served as a great source of inspiration and

helped to establish important connections

between statistical physics and information

theory [2–6]. In the original version, the demon

operates a trapdoor between two heat baths,

such that a seemingly counterintuitive heat flow

is established.
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Today, more generally, devices that are able to

extract work from a single heat bath by

rectifying thermal fluctuations are also called

“Maxwell’s demons” [7]. Several schemes

detailing how the demon could apparently break

the second law have been proposed, for example

Szilard’s heat engine [2]. More recent schemes

are presented in Refs. [7–12], where

measurement errors are also accounted for.
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A classical expression of the second law states

the following: Maximum (average) work

extractable from a system in contact with a

single thermal bath cannot exceed the free

energy decrease between the system’s initial and

final equilibrium states.

However, as illustrated by Szilard’s heat engine,

it is possible to break this bound under the

assumption of additional information available to

the work-extracting agent.

Free Energy = Average Energy − Entropy
5



To account for this possibility, the second law

can be generalized to include transformations

using feedback control [8,13–19]. In particular,

in Ref. [18] it is shown that under feedback

control, the extracted work W must satisfy

W ≤ kTIc, (1)

where k is Boltzmann’s constant, T is the

temperature of the bath, and Ic is the so called

transfer entropy from the system to the

measurement.
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Note that in (1) we have assumed there is no

free energy decrease from the initial to the final

state. Related generalizations of the second law

are stated in Refs. [20–22]. It is possible to

construct feedback protocols that saturate (1)

using reversible and quasistatic transformations

[18,23,24]. Reversible feedback protocols may be

optimal in terms of making (1) tight, but they

are also infinitely slow, and in Refs. [17,25–29]

some related finite-time problems are addressed.
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Our new contribution is to state an explicit

finite-time counterpart to (1), characterizing the

maximum work extractable using feedback

control, in terms of the transfer entropy.

To explain our result, consider a system modeled

by an overdamped Langevin equation. We show

that the maximum amount of extractable work

over a duration t, Wmax(t), can be expressed by

the integral

Wmax(t) = k
∫ t

0
Tminİc dt

′ ≤ kTIc(t). (2)
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Here Tmin(t) has an interpretation as the lowest

achievable system temperature after t time units

of continuous feedback control, assuming an

equilibrium initially Tmin(0) = T . Since

Tmin(t) ≤ T , for all t, the upper bound in (2)

follows trivially, implying (1).

The transfer entropy Ic(t) measures the useful

amount of information transmitted to the

controller from the partial observations in the

time interval [0, t].
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Therefore, every bit of transfer entropy, if

optimally exploited, allows us to retrieve between

kTmin ln 2 and kT ln 2 units of work. We

furthermore provide a novel expression for the

transfer entropy Ic(t), applicable to a large class

of systems in both continuous and in discrete

time. In particular, the new expression yields

closed-form solutions of the transfer entropy and

shows its independence of the applied feedback

law.
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Our other contribution is to use control theory

to characterize and interpret the feedback

protocol the demon should apply to reach the

upper limit Wmax(t).

The protocol is a linear feedback law based on

the optimal estimate of the system state, which

can be recursively computed using the so-called

Kalman–Bucy filter. The found feedback law

also offers a simple electrical implementation.
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A proper physical implementation is also shown

to require an external work supply to maintain

the noise on the wires at an acceptable level.

The cost of this noise suppressing mechanism

can be evaluated by standard thermodynamic

arguments, or through a non-equilibrium

extension of Landauer’s memory erasure

principle.
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System model

The system we first consider is an electric

capacitor C, a resistor R with thermal noise (the

heat bath), and a feedback controller (the

demon) with access to noisy voltage

measurements, see Fig. 1. The resistor is

subjected to Johnson–Nyquist noise [39,40].
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FIG.1: The demon (the feedback controller) connected to

a capacitor, a heat bath of temperature T , and a

measurement noise source of intensity Vmeas. The demon

may choose the current i freely, and has access to the

noisy voltage measurement vmeas.
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The circuit is modeled by an overdamped

Langevin equation

τ v̇ = −v+Ri+
√
2kTRw, 〈v(0)〉 = 0,

vmeas = v+
√
Vmeaswmeas, 〈v(0)2〉 = kT

C
,

(3)

with v(0) Gaussian, w and wmeas uncorrelated

Gaussian white noise (〈w(t)w(t′)〉 =
〈wmeas(t)wmeas(t′)〉 = δ(t− t′)), Vmeas the

intensity of the measurement noise, and τ = RC

being the time constant of the open circuit.
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The measurement noise
√
Vmeaswmeas can be

thought of as the Johnson–Nyquist noise of the

wire between the capacitor and the demon,

whose resistance for simplicity is incorporated in

the demon. The heat flow to the capacitor is Q̇

and the work-extraction rate of the demon is Ẇ ,

and satisfy the first law of thermodynamics,

U̇ = Q̇− Ẇ (4)

where
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U = 1
2C〈v2〉 ≡ 1

2kTC,

Q̇ = k
τ
(T − TC), Ẇ = −〈vi〉.

(5)

We denote the effective instantaneous

temperature (“kinetic temperature”) of the

capacitor by TC, and its internal energy by U .

For detailed derivations of (4)–(5), see Ref. [37].

Furthermore, we assume the capacitor initially is

in thermal equilibrium with the heat bath, i.e.,

TC(0) = T .
17



Just as in Ref. [17], we can justify calling TC(t) a

temperature since it appears in a Fourier-like

heat conduction law (see Q̇). Also, since our

applied controls will maintain a Gaussian

distribution of v, TC(t) will be the true

temperature of the capacitor if it were to be

disconnected from all the other elements at time

t. The voltage vmeas is the measurement that

supplies the demon with information, and can be

seen as a noisy measurement of the fluctuating

capacitor voltage v.
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We will show how a demon can optimally control

the work extraction by carefully exploiting the

measurements vmeas and properly choosing the

injected current i. Intuitively, the demon can

create a positive work rate Ẇ if it chooses i < 0

when it correctly estimates v > 0, and vice versa.

But how the demon should estimate v, and how

to optimally choose i may be less obvious.
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If we know the trajectory of the effective

temperature TC, it is from (4) and (5) possible

to solve for the amount of extracted work,

W (t) =
∫ t

0

k

τ
(T − TC) dt

′ +
1

2
k(T − TC(t)). (6)
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In particular, if we can characterize a lower

bound on the effective temperature under all

allowed controls, Tmin(t
′) ≤ TC(t

′) for 0 ≤ t′ ≤ t,

we get an upper bound on the work that a

demon can extract,

Wmax(t) :=
∫ t

0

k

τ
(T − Tmin) dt

′ +
1

2
k(T − Tmin(t)),

(7)

so that W (t) ≤Wmax(t). In the following, we

characterize Tmin, and thereby Wmax, using

optimal control theory.
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Demon model and optimal continuous-time

feedback

Optimal control theory [41] teaches how to

compute Tmin, and to characterize the

corresponding feedback law. In particular, for

linear systems the separation principle [42] says

we can achieve the goal in two steps: First, we

should continuously and optimally estimate the

voltage v(t) of the capacitance, given the

available measurements

(vmeas)t0 ≡ {vmeas(t′), 0 ≤ t′ ≤ t}.
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Second, we should continuously use the found

optimal estimate to update the current i(t) using

a suitable linear feedback law.

The best possible estimate v̂(t) of v(t), given the

measurement trajectory (vmeas)t0, can be

recursively constructed by the celebrated

Kalman–Bucy filter [43], which leads to a

minimum variance estimation error [41] and

exploits as much of the information contained in

vmeas as is possible [44].
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We give a brief background to the Kalman–Bucy

filter and its properties next. The filter state is

denoted v̂ and satisfies the differential equation

τ
d

dt
v̂ = −v̂+Ri+K(vmeas − v̂), v̂(0) = 0, (8)

where K is a time-varying function to be

specified.
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Guided by optimal control theory and the

separation principle, we let the demon use the

simple linear causal feedback

i(t′) = −Gv̂(t′), 0 ≤ t′ ≤ t, (9)

where 0 ≤ G <∞ is a fixed scalar feedback gain.

We may think of the feedback gain G as the

“conductance” of the demon: If the demon

believes the voltage of the capacitor to be v̂, it

will admit the current Gv̂. If v ≈ v̂, the demon

will indeed look like an electric load of

conductance close to G.
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While G = 0 (open circuit) creates a demon that

only (optimally) observes, G → ∞ also removes

energy from the capacitance at the highest

possible rate, achieving the minimum effective

temperature Tmin. This can be seen as follows:

Inserting (9) in (8) we can compute the evolution

of the variance V̂ ≡ 〈v̂2〉 of the filter estimate as

τ
d

dt
V̂ = −2 (1+GR) V̂ +

σkT2
min

2CT
, V̂ (0) = 0.

(10)
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We note that since Tmin is bounded, V̂ can be

made arbitrarily close to zero by increasing the

feedback gain G. From (paper14) and

(paper15), it follows that

kTC

C
= 〈v2〉 = 〈v̂2〉+ 〈∆v2〉 = V̂ +

kTmin

C
. (11)

Since Tmin is independent of G, and V̂ can be

made arbitrarily close to zero, we realize that the

demon through its policy is cooling the capacitor

and for all t,

TC(t) ց Tmin(t) as G→ ∞. (12)

27



This shows a demon should implement a

Kalman–Bucy filter with a large (infinite)

feedback gain G to extract the work Wmax.

For a general feedback gain G ≥ 0 in (9), the

effective temperature of the capacitor will drop

exponentially from TC(0) = T to

TNESS
C =

1

1+GR
T +

GR

1+GR
TNESS
min . (13)
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The corresponding NESS work-extraction rate

can be shown to become

ẆNESS =
k

τ
(T − TNESS

min )
GR

1+GR
. (14)

Thus the continuous feedback protocol in (9)

can realize any NESS work rate between 0 and

the maximum ẆNESS
max = k

τ
(T − TNESS

min ) by proper

choice of gain G.

The above optimal controller can be generalized

to any system with linear dynamics.
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Information flow and maximum work theorem

To establish the maximum work theorem in (2),

we need to quantify the information flow from

the uncertain part of the voltage v to the

measurement vmeas, under continuous feedback.

This is the transfer entropy, as is explained in

Ref. [18], for example.
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We show that the appropriate continuous-time

limit of the transfer entropy is

Ic(t) = I((v(0), (w)t0); (vmeas)
t
0). (15)

This is the mutual information between the

uncertain initial voltage v(0) and noise trajectory

w from the bath, and the measurement

trajectory vmeas.
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Mutual information [47] between two stochastic

variables ξ and θ is as usual defined as

I(θ; ξ) ≡
∫

ln









dPθξ

d(Pθ ⊗ Pξ)









dPθξ ≥ 0, (16)

and is equal to the amount the (differential)

Shannon entropy of ξ decreases with knowledge

of θ, and vice versa.
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Here Pθξ, Pθ, and Pξ are joint and marginal

probability measures of the stochastic variables θ

and ξ. We prove that the transfer entropy in fact

has the following explicit form:

Ic(t) =
σ

4τ

∫ t

0

Tmin

T
dt′. (17)

Note that Ic does not otherwise depend on the

details of the demon, for example the feedback

gain G.
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It now follows from Eqs. (7), (paper11), and

(17) that the maximum extracted work must

satisfy

Wmax(t) =
∫ t

0

k

τ
(T − Tmin) dt

′ +
1

2
k(T − Tmin(t))

=
∫ t

0

σkT2
min

4τT
dt′ = k

∫ t

0
Tminİc dt

′, (18)

which proves the equality in (2). The inequality

trivially follows since Tmin ≤ T .
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The expressions for Ic and Wmax provide

interesting insights concerning information and

work flow in the feedback loop. Since Tmin

decreases monotonically, the transfer entropy

rate İc is largest just when the measurement and

feedback control start, and then decreases until

it stabilizes at

İNESS
c =

σTNESS
min

4τT
=

√
1+ σ − 1

2τ
. (19)
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In NESS, the fresh measurements are no longer

able to improve the quality of the estimate, i.e.,

to decrease the error variance 〈[v(t)− v̂(t)]2〉 any

further. Since Ẇmax = kTminİc, the

work-extraction rate also decreases until it

stabilizes at

ẆNESS = kTminİ
NESS
c

GR

1+GR
, (20)

see (14).
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As in related studies [18,23,26], we can now

define and study the information efficiency η of

the demon,

η ≡ W

kTIc
∈ [0,1]. (21)

It measures the amount of extracted work per

unit of received useful information. An η ≈ 1

means that the demon is close to saturating (1),

and is operating at the limit of the generalized

second law of thermodynamics.
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For our demons in NESS, we obtain the

efficiency

ηNESS =
Tmin

T

GR

1+GR
, (22)

using (20). Hence, only a maximum work demon

(G→ ∞) with Tmin ≈ T will operate at an

information efficiency close to 1. This

corresponds to the poor measurement limit

(σ ≈ 0), and a very small maximum work rate. A

demon with access to almost perfect

measurements (σ → ∞) has Tmin ≈ 0, and a very

low information efficiency, η ≈ 0.
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Note also that a less aggressive demon (small G)

has a lower efficiency, but that this is by choice:

The transfer entropy rate is independent on G,

and a smaller G decreases Ẇ , leading to a lower

efficiency.
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INTRODUCTION

1. Partially observable stochastic control

problem

2. Feedback communication problem

3. Interaction of information and control

4. A general view of interconnection

5. Are communication problems really

different from control problems?
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1. Partially Observable Stochastic Control
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1. Partially observable stochastic control

1.1 Formulation

(1.1)Xn+1 = Fn(Xn, un, ξn) , n = 0,1,2, . . .

(1.2) Yn+1 = Gn(Xn, ηn) , n = 0,1,2, . . .











Hidden

Markov

Process

E = State space

U = Control space

E1 = Observation space

ξi ∈ S1 ; ηi ∈ S2

Assume: X0, (ξi), (ηi) are independent

Admissible strategy π := u0(y0), u1(y0, y1), . . .

sequence of measurable mappings

Cost function:

JN(π,X0) = E(
N−1
∑

n=0

qn(Xn, un) + rN(Xn))(1.3)

JN to be minimized by choice of π.
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Bellman Equation

Fully Observable Case:

VN(x) =
∫

E
rN(x)µ(dx)

Vn(x) = inf
u∈U

[q̂n(x, u) + Pun V̂n(x)]

In Partially Observation Case: we want

V̂N(c) = r̂N(c)

V̂n(c) = inf
u∈U

[q̂n(c, u) + P̂un V̂n(c)]

where c is a sufficient statistic

Reduce the Partially Observable Case to the

Fully Observable Case
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(Ω,F , P ) fixed probability space

Idea: Define sufficient statistics

(appropriate conditional distributions),

describe their evolution and rewrite the cost

function in terms of these sufficient

statistics.

Yn = σ(Y0, . . . , Yn)(1.4)

= Information contained in observations

up to time n

1.2 Conditional distributions and their

evolution

Let Cn, n = 0,1, . . . be the conditional
distribution of Xn given Yn. This means

E(ϕ(Xn, Yn)(ω) =

∫

E
ϕ(x, Yn(ω))Cn(ω, dx)(1.5)

ϕ : E ×E1 → R+ P − a.s. ω

44



Subtlety: The observations (Yn)n=0,1,...

depend on the control sequence

(un(y0, . . . , yn))n=0,1,... and, in turn, the

control sequence depends on the

observations.

It can be shown that the sequence
(Cn)n=0,1,... of conditional distributions is a
Controlled Markov Chain with a
time-dependent and control-dependent
transition function:

P̂unψ(c) =(1.6)

E

[∫

E
ψ[F̂n(c, u,Gn+1(Fn(x, u, ξn), ηn+1))]c(dx)

]

where Ê ⊂ P(E) measurable

F̂n : Ê → R+

c ∈ Ê

ψ ∈ Bb(Ê)
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Furthermore, in many situations, one can

show that there exists a sequence of

independent random variables (ξ̂L)i=0,1,...

taking values in Ŝ1 (Innovations sequence)

and measurable mappings:

F̂n : Ê × U × Ŝ1 → Ê s.t.

Cn+1 = F̂n(Cn, un, ξ̂n) , n = 0,1, . . .(1.7)

Note: Loop between control and

observation has been eliminated

Define:

q̂n(c, u) =
∫

E
qn(x, u)c(dx) , n = 0,1, . . .(1.8)

r̂N(c) =

∫

E
rN(x)c(dx) ,

c ∈ Ê

u ∈ U
(1.9)
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Bellman Equations

V̂N(c) = r̂N(c)(1.10)

V̂n(c) = inf
u∈U

[q̂n(c, u) + P̂un V̂n(c)](1.11)

= q̂n(c, ûn(c)) + P̂ ûnn V̂n(c)

n = 0,1,2, . . .

Theorem: Optimal strategy π is

determined by the sequence:

û0(ĉ0), û1(ĉ1, ĉ0), . . .

where ĉ0, ĉ1, . . . are functions of

y0, (y0, y1), . . . given recursively by

Ĉn+1 = F̂n(ĉn, ûn(ĉn), yn+1)(1.12)

ĉ0 = E(X0|Y0)

Min. Cost = E(V̂0(c0))(1.13)
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Separation Theorem

Estimation and Control Separate

Average Cost Problem

min lim
N→∞

1

N
E





N−1
∑

n=0
qn(xn, un) + rN(xN)





Minimization is over all strategiess

π := u0(y0), u1(y0, y1), . . .
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Feedback Communication

Ref: S. Tatikonda and S.K. Mitter:

The Capacity of Channels with Feedback,

IEEE Trans. on Information Theory, Vol.

55, Jan. 2009, pp. 323–349.
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2. Feedback Communication Problem
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2. Feedback communication problem

Figure 1. Interconnection

Choose encoder and decoder to transmit message

over the channel to minimize the probability of error

Channel at time t: P(dbt|at, bt−1) stochastic kernel

at = (a0, . . . , at)

Channel = Sequence of P(dbt|at, bt−1)
∣

∣

∣

t

t=1
(2.1)

Time ordering: Message = W,A1, B1, , AT , BT , Ŵ =

Decoded message

W = (1,2, . . . ,M)
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Code function:

Ft = {ft : Bt−1 → A : measurable}(2.2)

FT =
T
∏

t=1

Ft

Channel code function: fT = (f1, . . . , ft)

Distribution on code functions: P(dft|f t−1)
∣

∣

∣

T

t=1

Channel code = list of M channel code functions

Code functions are introduced to reduce the

feedback communication problem to a no feedback

communication problem.

52



Average Measure of Dependence

Mutual Information

I(AT ;BT ) = EP
AT ,BT

log

(

PAT ,BT

PATPBT

)

(2.3)

= EP
AT ,BT

log

(

PBT |AT

PBT

)

I(AT ;BT ) =
T
∑

t=1

I(AT ;Bt|Bt−1)

Information transmitted to the receiver depends on

future (At+1, . . . , AT).

Directed Mutual Information (Causal)

I(AT → BT ) =
T
∑

t=1

I(At;Bt|Bt−1)(2.4)
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To compute Mutual Information (Directed Mutual

Information), need joint distribution

PAT ,BT (da
T , dbT )

This can be done if we are given the channel

P(dbt|at, bt−1)
∣

∣

∣

T

t=1

and channel input distributions

Dt := P(dat|at−1, bt−1
∣

∣

∣

T

t=1
(2.5)

Interconnection of channel input to channel

Channel Capacity

CT = sup
DT

1

T
I(AT → BT )(2.6)

(Note: Optimization over original input codes, not

on space of code functions.)
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Markov Channel

Figure 2. Markov channel

P(dst+1|st, at, bt)
∣

∣

∣

T

t=1
: state transition

P(dbt|st, at)|Tt=1 : channel output

Capacity of Markov Channels

sup
D∞

lim
T→∞

1

T
I(AT → BT )(2.7)

It turns out that by appropriately defining sufficient

statistics (πt) (conditional distributions of the state

given information from encoder to decoder) and

controls ut(dat|πt), and state Xt = (πt−1, At−1, Bt−1)

and instantaneous cost c(xt, ut, ut+1), (2.7) can be

formulated as a Partially Observed Stochastic

Control Problem.
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In turn, as shown in Part 1, this can be reformulated

as a fully-observable stochastic control problem.

This problem is more like a dual control problem

since the choice of the channel input can help the

decoder identify the channel.

This is also an example where the information

pattern is nested: The encoder has more information

than the decoder.
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The Interaction of Control 
and Communication

Sanjoy K. Mitter
MIT
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Big questions about communication.

• Are all communication problems asymptotically alike?

• How does delay interact with capacity issues?

• Can we find examples that let us explore these questions in an
asymptotic setting?

“. . . can be pursued further and is related to a duality
between past and future and the notions of control and
knowledge. Thus we may have knowledge of the past and
cannot control it; we may control the future but have no
knowledge of it.” — Claude Shannon 1959
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An abstract model of single channel problems

!
"

#
$

!
"

"

#

!
$

!

Source

Ut

Wt

Designed

DesignedSpecified

St

Encoder

Et

Feedback and Memory

Decoder

1 Step

Ut−1

Dt

Channel
Noisy

$ "

#

"

Xt

From Pattern I

delay

VtCommon Randomness R∞
1

Yt

Zt

fc

• Problem: Source S, Information pattern I, and Objective V.

• Constrained resource: Noisy channel fc

• Designed solution: “Encoder” E , “Decoder” D
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Focus: what channels are “good enough”

• fc solves the problem if ∃E ,D so system satisfies V

• Problem A is harder than problem B if any fc that solves A

solves B.

• Information theory is an asymptotic theory

– Pick V family with an appropriate “slack” parameter

– Consider the set of channels that solve the problem.

– Take union over slack parameter choices.
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The Shannon problems AR,ε,d

• Source: noninteractive Xi (R bits): fair coin tosses

• Information pattern: Di has access to Zi
1

– Af With feedback: Ei gets Xi
1 and Zi−1

1

– Anf Without feedback: Ei gets only Xi
1

• Performance objective: V(ε, d) is satisfied if P(Xi "= Ui+d) ≤ ε

for every i ≥ 0.

– Slack parameter: permitted delay d

– Natural orderings: larger ε, d is easier but larger R is harder.

• Classical capacity

Cf
R =

⋂

ε>0

⋂

R′<R

⋃

d>0

{fc|fc solves Af
R′,ε,d}

CShannon(fc) = sup{R > 0|fc ∈ CR}
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Classical relationships

• Feedback doesn’t change capacity for memoryless channels Cm

Cnf
R ∩ Cm = Cf

R ∩ Cm

• Zero-error capacity

Cf
0,R =

⋂

R′<R

⋃

d>0

{fc|fc solves Af
R′,0,d}

C0(fc) = sup{R > 0|fc ∈ C0,R}

– Can change with feedback even for memoryless channels

(Cnf
0,R ∩ Cm) ⊂ (Cf

0,R ∩ Cm)

– Zero-error problem is fundamentally harder

(Cnf
0,R ∩ Cm) ⊂ (Cf

0,R ∩ Cm) ⊂ (CR ∩ Cm)
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Estimation with distortion: A(FX ,ρ,D,d)

• Source: noninteractive Xi drawn iid from FX

• Same information patterns: with/without feedback.

• Performance objective: V(ρ,D, d) is satisfied if
limn→∞

1
nE[

∑n
i=1 ρ(Xi, Ui+d)] ≤ D.

– Slack parameter: permitted delay d

– Natural orderings: larger D, d is easier

• Channels that are good enough

Cf
e,(FX ,ρ,D) =

⋂

D′>D

⋃

d>0

{fc|fc solves Af
(FX ,ρ,D′,d)}

• “Separation Theorem” if ρ is finite.

(CR(D) ∩ Cm) = (Cnf
e,(FX ,ρ,D) ∩ Cm) = (Cf

e,(FX ,ρ,D) ∩ Cm)
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Stabilization and anytime communication

• Simple control problem

• Why classical capacity.is not enough.

• Why anytime (delay-universality) is needed

• Some simple implications (power laws, etc.)
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A simple scalar distributed control problem

1 Step
Delay

%
&

'
(Channel

Noisy

Designed
Observer

Designed
Controller

%
&

'
(!

"

"

#

!

Possible Control Knowledge
#

Possible Channel Feedback

1 Step
Delay

#

$

Ut

Control Signals

O

C

Xt

Wt

Ut−1

Scalar
System

$ "

Xt+1 = λXt + Ut + Wt

• Unstable λ > 1, bounded initial condition and disturbance W .

• Goal: Stability = supt>0 E[|Xt|η] ≤ K for some K < ∞.
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Is Shannon capacity all we need?

• Consider a system with

– λ = 2 for the dynamics

– noisy channel that sometimes drops packets but is otherwise
noiseless (Real erasure channel)

Zt =





Yt with Probability 1

2

0 with Probability 1
2

• No other constraints, so design is obvious: Yt = Xt and
Ut = −λZt

• Resulting closed loop dynamics:

Xt+1 =





Wt with Probability 1

2

2Xt + Wt with Probability 1
2
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Is the closed-loop system stable?

Xt+1 =





Wt with Probability 1

2

2Xt + Wt with Probability 1
2

• i.i.d. erasures mean arbitrarily long stretches of erasures are
possible, though unlikely.

– System is not guaranteed to stay inside any box.

– Under stochastic disturbances, the variance of the state is
asymptotically infinite.

• For worst case disturbances Wt = 1, the tail probability is
dying off as P (|X| > x) ≈ K

x .

• Meanwhile, C = ∞!
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Run same plant X over noiseless channel

Window known to contain Xt

Sending R bits, cut window by a factor of 2−R

0 1

"

!$

%
%&

'
'(

"
$! $!

grows by Ω
2 on each side

giving a new window for Xt+1

will grow by factor of λ > 1

∆t+1

Encode which control Ut to apply

λ∆t

∆t

As long as R > log2 λ, we can have ∆ stay bounded forever.
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What is needed: key intuition

• Break state X into sum of X̌ (response to disturbance) and X̃

(response to control)

• Suppose λ = 2 and so X̌t =
∑t

i=0 2iWt−1

• Assume Wj either 0 or 1

• In binary notation: X̌t = W0W1W2 . . .Wt−1.00000 . . .

• If −X̃t is close to X̌t, their binary representations likely agree
in all the high-order bits.

– High-order bits represent earlier disturbances.

– Typically, to get a difference at the Wt−d level, we have to
be off by about 2d.

Stabilization implies communicating bits reliably in a
special fashion.
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Anytime communication problems: AR,α,K

• Same as Shannon problem in source and information pattern.

• Performance objective different:

– Reinterpret Ut = 0.X̂0(t), X̂1(t), X̂2(t), . . . in binary

– V(K,α) is satisfied if P(Xi "= X̂i(i + d)) ≤ K2−αd for every
i ≥ 0, d ≥ 0.

– Slack parameter: constant factor K

– Natural orderings: larger K is easier, but larger R,α are
harder.

• Capacity

Cf
a,(R,α) =

⋂

R′<R

⋂

α′<α

⋃

K>0

{fc|fc solves Af
(R′,α′,K)}

Cany(fc, α) = sup{R > 0|fc ∈ Cf
a,(R,α)}
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Separation theorem for control

Necessity: If a scalar system with parameter λ > 1 can be
stabilized with finite η-moment across a noisy channel, then the
channel with noiseless feedback must have

Cany(η log2 λ) ≥ log2 λ

In general: If P (|X| > m) < f(m), then ∃K : Perror(d) < f(Kλd)

Sufficiency: If there is an α > η log2 λ for which the channel with
noiseless feedback has

Cany(α) > log2 λ

then the scalar system with parameter λ ≥ 1 with a bounded
disturbance can be stabilized across the noisy channel with finite
η-moment.
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What does all this imply?

• If we want P (|Xt| > m) ≤ f(m) = 0 for some finite m, we
require zero-error reliability across the channel.

• For generic DMCs, anytime reliability with feedback is
upper-bounded:

f(Kλd) ≥ ζd

f(m) ≥ ζ
log2( m

K
)

log2 λ

f(m) ≥ K ′m−
log2

1
ζ

log2 λ

A controlled state can have at best a power-law tail.

• If we just want limm→∞ f(m) = 0, then just Shannon capacity
> log2 λ is required for DMCs.

• Almost-sure stabilization for Wt = 0 follows by time-varying
transformation.
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Stabilization and Anytime Equivalence

• With nested information: Af
λ,η,K . Without: Anf

– Slack parameter: K (Performance)

– Natural ordering: larger η, λ are harder, but larger K is
easier.

Cf
s,(λ,η) =

⋂

λ′<λ

⋂

η′<η

⋃

K>0

{fc|fc solves Af
(λ′,η′,K)}

• Equivalences

Cnf
s,(λ,η) ⊆ Cf

s,(λ,η) = Cf
a,(log2 λ,η log2 λ)

(Cnf
s,(λ,η)∩C

finite) = (Cf
s,(λ,η)∩C

finite) = (Cf
a,(log2 λ,η log2 λ)∩C

finite)
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Asymptotic communication problem hierarchy

• The easiest: Shannon communication

– Asymptotically: a single figure of merit C

– Equivalent to most estimation problems of stationary
ergodic processes with bounded distortion measures.

– Feedback does not matter.

• Intermediate families: Anytime communication

– Multiple figures of merit: ( 'R, 'α)

– Feedback case equivalent to stabilization problems

– Related nonstationary estimation problems fall here also

– Does feedback matter?

• Hardest level: Zero-error communication

– Single figure of merit C0

– Feedback matters.
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Language of Probability Theory

Probability Space

( ,F , P )

F = σ-field

= class of subsets of , closed under

complementation, countable

intersections, countable unions.
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A nonnegative set function P ( · ) defined on F is

a Probability Measure if

(i) P ( ) = 1

(ii) ∀ finite, countable collection {Bk} of subsets

of F s.t.

Bk ∩Bj = φ , k 6= j

P (∩
k
Bk) =

∑

k
P (Bk)
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Given ( ,F , P ) a Probability space

f : → R measurable

L2( ,F , P ) = {f | ∫ |f |2dP <∞}

Finite Energy signal

G ⊂ F, sub σ-field

L2( ,G, P )

E(F|G) = Projection of L2( ,F , P ) onto L2( ,G, P )

76



Conditional Expectation

“Nonlinear” Projection

(Xt)t≥0: Stochastic Process

E(Xt|Xs, s < t) = Xs a.s.

Martingale
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Independence and Conditional Independence

σ-field generated by (Xt)t∈T = smallest σ-field

such that ∀ Xt are measurable

Markov Process
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Past and Future Conditionally Independent given

the present

σ(Xs|s < t) ⊥ σ(Xs|s > t) | σ(Xt)
Past Future Present

Why we need this language:

See J.C. Willems, “Open Stochastic Systems,”

IEEE Trans. on Automatic Control, 2013.
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Wiener and Kalman Filtering

“Filtering and Stochastic Control:

A Historical Perspective”

by S.K. Mitter

in IEEE Control Systems

pp.67-76, June 1996



Wiener and Kalman Filtering

In order to introduce the main ideas of nonlinear

filtering, we first consider linear filtering theory.

A rather comprehensive survey of linear filtering

theory was undertaken by Kailath in [1] and

therefore we shall only expose those ideas which

generalize to the nonlinear situation.
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Suppose we have a signal process (zt) and an

orthogonal increment process (wt), the noise

process and we have the observation equation

yt =
∫ t

0
zsds+ wt . (23)

Note that if (wt) is Brownian motion then this

represents the observation

ŷ = zt+ ηt . (24)

where ηt is the formal (distributional) derivative

of Brownian motion and hence it is white noise.
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We make the following assumptions.

(A1) (wt) has stationary orthogonal increments

(A2) (zt) is a second-order q.m. continuous

process

(A3) For ∀s and t > s

(wt − ws) ⊥ Hw,z
s

where H
w,z
s is the Hilbert space spanned by

(wτ , zτ |τ ≤ s).
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The last assumption is a causality requirement

but includes situations where the signal zs may

be influenced by past observations as would

typically arise in feedback control problems. A

slightly stronger assumption is

(A3′) Hw ⊥ Hz

which states that the signal and noise are

uncorrelated, a situation which often arises in

communication problems.
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The situation which Wiener considered

corresponds to (24), where he assumed that (zt)

is a stationary, second-order, q.m. continuous

process.
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The filtering problem is to obtain the best linear

estimate ẑt of zt based on the past observations

(ys|s ≤ t). There are two other problems of

interest, namely, prediction, when we are

interested in the best linear estimate ẑ′r, r > t

based on observations (ys|s ≤ t) and smoothing,

where we require obtaining the best linear

estimate ẑ′r, r < t based on observations (ys|s ≤ t).
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Abstractly, the solution to the problem of

filtering corresponds to explicitly computing

ẑt = P
y
t (zt) (25)

where P
y
t is the projection operator onto the

Hilbert space H
y
t . We proceed to outline the

solution using a method originally proposed by

Bode and Shannon [2] and later presented in

modern form by Kailath [3]. For a textbook

account see Davis [4] and Wong [5], which we

largely follow.
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Let us operate under the assumption (A3)′,

although all the results are true under the weaker

assumption (A3). The key to obtaining a

solution is the introduction of the innovations

process

νt = yt −
∫ t

0
ẑsds . (26)
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The following facts about the innovations

process can be proved:

(F1) νt is an orthogonal increment process.

(F2) ∀s, ∀t > s

νt − νs ⊥ Hy
s and cov(νt) = cov(wt)

(F3) H
y
t = Hν

t .
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The name “innovations” originates in the fact

that the optimum filter extracts the maximal

probabilistic information from the observations in

the sense that what remains is essentially

equivalent to the noise present in the

observation. Furthermore, (F3) states that the

innovations process contains the same

information as the observations. This can be

proved by showing that the linear transformation

relating the observations and innovations is

causal and causally invertible.
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As we shall see later, these results are true in a

much more general context. To proceed further,

we need a concrete representation of vectors

residing in the Hilbert space H
y
t . The important

result is that every vector Y ∈ H
y
t can be

represented as

Y =
∫ t

0
β(s)dys (27)

where β is a deterministic square integrable

function and the above integral is a stochastic

integral.
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For an account of stochastic integrals see the

book of Wong [5]. Now using the Projection

Theorem, (27), and (F1)–(F3) we can obtain a

representation theorem for the estimate ẑt as:

ẑt =
∫ t

0





∂

∂s
E(ztν

′
s)dνs



 . (28)
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What we have done so far is quite general. As

we have mentioned, Wiener assumed that (zs)

was a stationary q.m. second-order process, and

he obtained a linear integral representation for

the estimate where the kernel of the integral

operator was obtained as a solution to an

integral equation, the Wiener–Hopf equation.
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As Wiener himself remarked, an effective

solution to the Wiener–Hopf equation using the

method of spectral factorization (see, for

example, Youla [6]) could only be obtained when

(zs) had a rational spectral density.
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In his fundamental work, Kalman [7,8,9] made

this explicit by introducing a Gauss–Markov

diffusion model for the signal










dxt = Fxtdt+Gdβs

zt = Hxt
(29)

where xt is an n-vector-valued Gaussian random

process, wt is m-dimensional Brownian motion, zt

is a p-vector-valued Gaussian random process,

and F , G, and H are matrices of appropriate

order.
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We note that (29) is actually an integral

equation
xt = x0 +

∫ t

0
Fxsds+

∫ t

0
Gdβs (30)

where the last integral is a stochastic integral.

The Gauss–Markov assumption is no loss of

generality since in Wiener’s work the best linear

estimate was sought for signals modeled as

second-order random processes. The filtering

problem now is to compute the best estimate

(which is provably linear)

x̂t = Pt(xt) . (31)
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Moreover, in this new setup no assumption of

stationarity is needed. Indeed the matrices F , G,

and H may depend on time. The derivation of

the Kalman filter can now proceed as follows.

First note that

x̂t =
∫ t

0

∂

∂s
E(xtν

′
s)dνs , (32)

(See (28).)
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Now we can show that

x̂t − x̂0 −
∫ t

0
F x̂sds =

∫ t

0
K(s)dνs . (33)

where K(s) is a square integrable matrix-valued

function. This is analogous to the representation

theorem given by (27). Eq. (33) can be written

in differential form as

dx̂t = F x̂tdt+K(t)dνt (34)

and let us assume that x̂0 = 0.
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The structure of (34) shows that the Kalman

Filter incorporates a model of the signal and a

correction term, which is an optimally weighted

error = K(t)(dyt − ẑtdt) (see Fig. 1).
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It remains to find an explicit expression for K(t).

Here we see an interplay between filtering theory

and linear systems theory. The solution of (34)

can be written as

x̂t =
∫ t

0
(t, s)K(s)dνs (35)

where (t, s) is the transition matrix

corresponding to F .
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From (32) and (35)

(t, s)K(s) =
∂

∂s
E(xtν

′
s)

and hence

K(t) =
∂

∂s
E(xtν

′
s) |s=t .

Some further calculations, using the fact that

xt ⊥ Hw
s , show that

K(t) = P (t)H ′ ,

where P (t) = E(x̃tx̃
′
t), x̃t = xt − x̂t.
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Finally, using the representation of solutions of

the linear stochastic differential equations (29)

and using (34), we can write a linear stochastic

differential equation for x̃t and write down a

representation for P (t) = E(x̃tx̃
′
t) as

P (t)=ψ(t,0)P (0)ψ′(t,0) +
∫ t

0
ψ(t, s)GG′ψ′(t, s)ds

+
∫ t

0
ψ(t, s)P (s)H ′HP (s)ψ′(t, s)ds (36)

where ψ(t, s) is the transition matrix

corresponding to (F − PH ′H).
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There is again a role of linear systems theory

evident here. Differentiating w.r. to t, we get a

matrix differential equation for P (t), the matrix

Ricatti equation

dP

dt
= GG′ − P (t)H ′HP (t) + FP (t) + P (t)F ′

P (0) = cov(x0) = P0 . (37)

Note that K(t) = P (t)H ′ is deterministic and

does not depend on the observation process yt,

and hence can be pre-computed.
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The approach to the solution of the Wiener

Filtering Problem consists in studying the

equilibrium behavior of P (t) as t→ ∞. There is

again a beautiful interplay between the infinite

time behavior of the filter and the structural

properties of (29). One can prove that if the

pair (F,G) is stabilizable and (H,F ) is detectable

then P (t) → P as t→ ∞ where P is the unique

non-negative solution to the algebraic Ricatti

equation corresponding to (37) and that

F − PH ′H is a stability matrix.
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Thus the filter is stable, in the sense that the

error covariance converges to the optimal error

covariance for the stationary problem even if F is

not a stability matrix. For the linear systems

concepts introduced here and the proof of the

above results the reader may consult Wonham

[10].
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In a Control context, the controls enter the filter

as a separate input and one needs to study the

controlled filtering problem. This is important

for proving the Separation Principle.
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On Some Connections between

Nonlinear Filtering, Information Theory,

and Statistical Mechanics

Sanjoy K. Mitter

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Joint work with Nigel Newton, University of Essex



Some Connections between Information Theory, Filtering

and Statistical Mechanics

Variational Approach to Bayesian Estimation

Stochastic Control Interpretation of Nonlinear Filtering
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Preliminaries

X,Y discrete random variables with joint distribution PXY

and marginals PX and PY

I(X; Y ) = EPXY



log
PXY

PX ⊗ PY



 : Mutual Information

Average measure of dependence of two random variables

Mutual Information is an example of the general notion of

relative entropy between two measures µ and ν on some

probability space ( ,F , P ) (discrete for the moment)

h(µ|ν) = Eµ log

(

µ

ν

)
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Properties:

(i) h(µ|ν) ≥ 0

(ii) h(µ|ν) = 0⇔ µ = ν

(iii) h(µ|ν) jointly convex in µ, ν

(But, not symmetric). Defines a pseudo-distance be-

tween two measures µ and ν.

We will have to deal with random variables in a more

general setting.
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Nonlinear Dynamical Systems

forced by (scaled) white noise

dxt

dt
= b(xt) + σ(xt)v̇t ,

where vt: Brownian motion and v̇t = white noise, formal

derivative of Brownian motion

Rewrite as Integral equation

xt = x0 +
∫ t

0
b(xs)ds+

∫ t

0
σ(xt)v̇tdt

= x0 +
∫ t

0
b(xs)ds+

∫ t

0
σ(xt)dvt ← Ito integral
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We want to think of x(·) := X as a map (random vari-

able) from ( ,F , P ) to (X ,B(X ) where X = C(0, T ;R)
and B(X ) is the Borel field associated with X . We call

the probability measure of X ∈ P(X ) the path space

measure

T

t

Xt (  ).

X is a random trajectory

Sometimes, we would want to look at these random tra-

jectories “through” a different measure P̂ (instead of P )

in order for it to “appear” differently, for example, tra-

jectories of Brownian Motion.
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Gibbs Measures:

Variational Characterization for Finite Systems

(H.O. Georgii: Gibbs Measures and Phase Transitions, Chapter 15)

Let S = finite set, and E = state space, finite set and

let = ES, finite.

Let be any potential, and H =
∑

A⊂S
A(w) be the

associated Hamiltonian

The unique Gibbs measure for is given by

ν(ω) = Z−1 exp[−H(ω)] , ω ∈
where

Z =
∑

ω∈
exp[−H(ω)] : Partition function
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For each probability measure µ on ,

µ(H) =
∑

ω∈
µ(ω)H(ω) and h(µ) = −

∑

ω∈
µ(ω) logµ(ω)

be the Energy and Entropy associated with µ

Then

µ(H)− h(µ) + logZ = h(µ|ν) ≥ 0

h(µ|ν) = 0⇔ µ = ν �

F(µ) = µ(H)− h(µ) : Free Energy

F(ν) = − logZ
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Generalization of these ideas to infinite systems leads to

characterization of translation-invariant Gibbs measures

as minimization of Specific Free Energy. A modification

of these ideas (using Exchangeability) leads to a proof

of the Noisy Channel Coding Theorem (BSC).

Variational Bayes and a Problem of Reliable Communication, Part II,

N. Newton, S.K. Mitter, J. Stat. Mech.: Theory and Experiment,

Iss. 11, pp. 111008, 2012
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Information Theory, Filtering and Statistical Mechanics

(Xt)t≥0 Markov Process, time homogeneous

P (Xt ∈ B|Xr, r ∈ [0, s]) = π(t− s,Xs, B) 0 ≤ s ≤ t ≤ T

Pt is the distribution of Xt with density pt

Pt(B) = P (Xt ∈ B) =
∫

B
pt(x)λx(dx) λx : ref. measure

Diffusion

(Ap)(x) =
1

2

∑

i,j

∂2(ai,jp)

∂xi∂xj
(x)−

∑

i

∂

∂xi
(bip)(x) on R

d

Xt = X0 +
∫ t

0
b(Xs)dt+

∫ t

0
σ(Xs)dvs

a = σσ′
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Relative Entropy

h(µ|λ) =
∫

X
q(x) log q(x)λ(dx) µ has density q w.r.t. λ

= +∞ otherwise

〈f, λ〉 =
∫

X
f(x)λ(dx)

x: statistical mechanical system, associated with (Xt)t≥0

Pt: state of x at time t

PSS: unique invariant measure with density pSS

Internal Energy EX(Pt) = 〈Hx, Pt〉

Entropy Sx(Pt) = −h(Pt|λx)

Free Energy FX(Pt) = Ex(Pt)− Sx(Pt)

Energy Function Hx(x) = − log pSS(x)

Choice assures Energy Function is a Gibbs measure for x
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Proposition:

(i) Unique minimizer of Free Energy of x is PSS

(ii) Fx(PSS) = 0

(iii) Free Energy of x is non-increasing

Proof.

F(x)(Pt) = h(Pt|PSS)⇒ (i) and (ii)

To prove (iii), P
(2)
s,t = two point joint distribution

P
(2)
s,t (B,C) = P (Xs ∈ B,Xt ∈ C) =

∫

B
π(t− s,X,C)Ps(dx)

P
(2)
s,t,SS = joint distribution when Ps = PSS

Chain rule for Relative Entropy �
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h(P
(2)
s,t |P

(2)
s,t,SS)

= h(Pt|PSS) +
∫

h(˜(t, s, x, · )|˜SS(t− s, x, · ))Pt(dx)

≥ h(Pt|PSS)
(Chain Rule)

where ˜(t, s, x, · ) = regular (Xt = x)-conditional dis-

tribution for Xs under the joint distribution P
(2)
s,t and

˜
SS(t − s, x, · ) is the equivalent under the joint distri-

bution P
(2)
s,t,SS.
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x: one component of a two-component energy conserv-

ing system that includes a unit temperature heat bath

with which x interacts

If Entropy of system = Entropy of the sum of two com-

ponents then any change in this entropy resulting from

the evolution of Pt = neg. of corresponding change in

Fx(Pt)

PSS: unique invariant measure with density pSS

Proposition: Entropy of closed system is maximized by

PSS and non-decreasing

Assertion (iii) in Proposition can be thought of as a Sec-

ond Law of Thermodynamics for x
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Observations (Interaction with Measurements)

Yt =
∫ t

0
g(Xs)ds+Wt

E

[

∫ t

0
|g(Xt)|2dt <∞

(Zt|t ∈ [0, T ]): regular conditional probability of Xt

given (Ys|0 ≤ s ≤ t)

ξt: density

ξt(x) = ξ0(x) +
∫ t

0
(Aξs)(x)ds+

∫ t

0
ξs(x)(g(x)− 〈g, Zs〉)′dνs

(1)

νt = Yt −
∫ t

0
〈g, Zs〉)ds Innovations
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We want to study the Information flow from the initial

state and running observations (Ys|0 ≤ s ≤ t) into the

regular conditional distribtution

PXt|(Ys,0≤s≤t) ( · , y)

(the filter).

Is this flow, conservative, dissipative?
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Information Theoretic Quantities

S(t) = I((Xs, s ∈ [0, T ]);Ys, s ∈ [0, t]) = supply

C(t) = I((Xs, s ∈ [t, T ]);Ys, s ∈ [0, t]) = storage

D(t) = S(t)− C(t) = dissipation

Proposition

S(t) = C(0) +
1

2
E
∫ t

0
|g(Xs)− 〈g, Zs〉|2ds

C(t) = I(Xt;Zt) = Eh(Zt|Pt)

D(t) = EI((Xs, s ∈ [0, t]);Ys, s ∈ [0, t]|Xt)
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.
S(t) =

1

2
E|g(Xt)− 〈g, Zt〉|2 (2)

.
D(t) = E





Apt

pt
log pt −

Aξt

ξ
log ξt



 (Xt) (3)

Sensitivity of Mutual Information C(t) to the randomiza-

tion in the dynamics of the signal

For Diffusions
.
D(t) =

1

2
E∇ log





ξt

pt





′
a∇ log





ξt

pt



 (Xt)

Rate of change of storage can be found by application

of Ito’s rule to

ξt log





ξt

pt



 (Xt)

122



Equations (2) and (3) show that the supply of informa-

tion is associated with the second integral in (1)
∫ t

0
ξs(x)(g(x)− 〈g, Zs〉)′dνs

and the dissipation associated with the first integral in (1)
∫ t

0
(Aξs)(x)ds

.
S(t) = signal to noise power ratio of the observations

and
.
D(t) = measure of the rate at which X forgets its past
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Notes on Proof:

C(t) = I(Xt;Ys; s ∈ [0, t]) = I(Xt;Zt)

S(t) = E logMt ,

where

Mt =
dZ0

dP0
(x0) exp

(

∫ t

0
g(xs)− 〈g, Zs〉

)′
dws

+
1

2

∫ t

0
|g(xs)− 〈g, Zs〉|2ds)

Interactive Statistical Mechanics

The conditional distribution Zt takes into account the

partial observations available up to time t. Define an

energy function for X|Z in such a way that Zt is the

minimum free-energy state at time t.
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Let (Z̃t) be a stochastic process that satisfies the filter

equation (Z̃t 6= Z0) with density (ξ̃t).

Eξ̃t corresponds to a state of X and satisfies the Fokker–

Planck equation.

Define energy function

HX|Z(x, t) = − log ξt(x)

EX|Z(Z̃t, t) = 〈HX|Z( · , t), Z̃t〉

SX|Z(Z̃t) = SX(Z̃t) = −h(Z̃t|λX)

FX|Z(Z̃t, t) = EX|Z(Z̃t, t)− SX|Z(Z̃t)
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Proposition

(i) Unique minimizer of the free energy of the conditional

system X|Z at time t in the state Zt

(ii) FX|Z(Zt, t) = 0 ∀ t

(iii) If EFX|Z(Z̃t, t) < ∞ and h(˜0| 0) < ∞, where ˜0 and

0 are the distributions of Z0 and Z̃0, then the Free

Energy of X|Z as state Z̃t evolves in a positive (Ys, s ∈
[0, t]) supermartingale.

Item (iii) is like a Conditional Second Law.

We can study the statistical mechanics of the joint sys-

tem (X,Z). Connection to Bayesian Inference as Free-

Energy Minimization
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Data Assimilation ≡ Path Estimation or Filtering

or Prediction

Nonlinear Filtering: The Innovations Viewpoint

Stochastic Partial Differential Equation for the Evolution

of the Conditional Density

The Variational Viewpoint:

Information-theoretic Interpretation

Connections to Stochastic Control

Non-equilibrium Statistical Mechanics
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2. A Variational Formulation of Bayesian Estimation

Let ( ,F , P ) be a probability space, (X,X ) and (Y,Y)
Borel spaces, and X : → X and Y : → Y measurable

mappings with distributions PX, PY and PXY on X , Y
and X × Y, respectively. Suppose that:

(H1) there exists a σ-finite (reference) measure, λY , on Y
such that PXY ≪ PX ⊗ λY . (This could be PY itself.)

Let Q : X × Y → [0,∞) be a version of the associated

Radon-Nikodym derivative, and

Ȳ =
{

y ∈ Y : 0 <
∫

X
Q(x, y)PX(dx) <∞

}

; (4)
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then Ȳ ∈ Y and PY (Ȳ) = 1. Let H : X×Y → (−∞,+∞]

be defined by

H(x, y) = − log(Q(x, y)) if y ∈ Ȳ

(5)
0 otherwise :

then PX|Y : X ×Y → [0,1], defined by

PX|Y (A, y) =

∫

A
exp(−H(x, y))PX(dx)

∫

X
exp(−H(x, y))PX(dx)

, (6)

is a regular conditional probability distribution for X given

Y ; i.e.
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PX|Y ( · , y) is a probability measure on X for each y,

PX|Y (A, · ) is Y-measurable for each A, and

PX|Y (A, Y ) = P (X ∈ A |Y ) a.s.

Eqs. (4)–(6) constitute an ‘outcome-by-outcome’

abstract Bayes formula, yielding a posterior probability

distribution for X for each outcome of Y .
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Let P(X ) be the set of probability measures on (X,X ),

and H(X) the set of (−∞,+∞]-valued, measurable func-

tions on the same space. For P̃X, P̂X ∈ P(X ) and H̃ ∈
H(X), we define

h(P̃X | P̂X) =
∫

X

log

(

dP̃X

dP̂X

)

dP̃X if P̃X ≪ P̂X and the integral exists

(7)
+∞ otherwise,

i(H̃) = − log

(∫

X

exp(−H̃)dPX

)

if 0 <

∫

X

exp(−H̃)dPX <∞
(8)

−∞ otherwise,

〈H̃, P̃X〉 =

∫

X

H̃dP̃X if the integral exists

(9)
+∞ otherwise.
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It is well known that the relative entropy h(P̃X | P̂X) can

be interpreted as the information gain of the probability

measure P̃X over P̂X. In fact, any version of − log(dP̃X/dP̂X)

is a generalisation of the Shannon information for X. For

almost all x, it is a measure of the ‘relative degree of sur-

prise’ in the outcome X = x for the two distributions P̃X

and P̂X. Thus, h(P̃X | P̂X) is the average reduction in

the degree of surprise in this outcome arising from the

acceptance of P̃X as the distribution for X, rather than

P̂X.
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If we interpret exp(−H̃) as a likelihood function for X, as-

sociated with some (unspecified) observation, then H̃(x)

is the ‘residual degree of surprise’ in that observation

if we already know that X = x, and i(H̃) is the ‘total

degree of surprise’ in that observation, i.e. the informa-

tion in the unspecified observation if all we know about

X is its prior PX. In what follows we shall call H̃(X)

the X-conditional information in the unspecified obser-

vation, and i(H̃) the information in that observation. (Of

course, H(X, y) and, respectively, i(H( · , y)) are the X-

conditional information and, respectively, information in

the observation that Y = y.)
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Theorem 1

(i) i ((H( · , y)) = minP̃X
[h(P̃X |PX) + 〈H( · , y), P̃X〉]

(ii) h(PX|Y ( · , y)|PX) = maxH̃

{

i(H̃)− 〈H̃, PX|Y ( · , y)
}

(iii) PX|Y ( · , y) is the unique minimizer in (i)

(iv) If H∗ is a maximizer in (ii), then ∃K ∈ R s.t. H∗(X) =

H(X, y) +K



Conceptualization

Information Processing over and above that in prior PX

In (i): Source of additional information is Y = y

Bayes Formula: Extracts info. pertinent h(PX|Y ( · , y)|PX)

and leaves residual 〈H,PX|Y 〉.

Input information is held in likelihood exp(−H( · , y)) and

extracted information in PX|Y ( · , y)
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Arbitrary Information procedure that postulates P̃X as

post-obs. distribution has access to additional informa-

tion. Hence: the notion Apparent Information.

In (ii): Source of additional information in Posterior Dis-

tribution PX|Y ( · , y). The aim now is to postulate an ob-

servation, i.e. a likelihood function exp(−H̃) which gives

rise to this observation.
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Input Information

h
(

PX|Y ( · , y)|PX

)

is merged with the residual information of the postulated

observation

〈H̃, PX|Y ( · , y)〉 :

Result ≥ i(H̃)

With equality ⇔ Obs. is compatible with PX|Y

i(H̃)− 〈H̃, PX|Y ( · , y)〉
= Inf. in Postulated Obs.

compatible with PX|Y ( · , y)

Compatible Inf. of exp(−H̃)
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3. Path estimation and the Stochastic Control View

3.1. Path estimators

The techniques of Section 2 are specialized here for the

case in which the estimand, X, and observation, Y ,

are, respectively, continuous R
n- and R

d-valued processes

governed by the following Itô integral equations:

Xt = X0 +

∫ t

0
b(Xs, s) ds+

∫ t

0
σ(Xs, s) dVs, for 0 ≤ t ≤ T,

(10)
X0 ∼ µ,

Yt =

∫ t

0
g(Xs) ds+Wt for 0 ≤ t ≤ T, (11)

where Xt, Vt ∈ R
n, µ is a law on (Rn,Bn), Yt,Wt ∈ R

d, and

b, σ and g are measurable mappings.
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Under suitable regularity conditions, these equations will

be unique in law and have a weak solution

[ ,F , (Ft), P, (V,W ), (X,Y )] ,

i.e., a filtered probability space supporting an (n + d)-

dimensional Brownian motion (V,W ) and an (n + d)-

dimensional semimartingale (X,Y ) such that (10) and

(11) are satisfied for all t. The abstract spaces (X,X )

and (Y,Y) now become the spaces (C([0, T ];Rn),BT) and

(C([0, T ];Rd),BT) of continuous functions, topologized

by the uniform norm. We continue to use the notation

(X,X ) and (Y,Y), though, for the sake of brevity.
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Let λY be Wiener measure on (Y,Y). Under suitable

conditions on µ, b, σ and g, we might expect the tech-

nical hypothesis for Theorem 1 to be satisfied and the

mutual information, E log[dPXY /d(PX⊗λY )(X,Y )], to be

finite. This will allow us to proceed as in Section 2 to

construct a function H on X × Y , and a corresponding

regular conditional probability, PX|Y , holds for all y. Fur-

thermore, if we can show that PX|Y ( · , y) ∼ PX, then we

shall be able to construct a continuous, strictly positive

martingale My on such that

My,t = E





dPX|Y ( · , y)
dPX

(X) | FX
t



 for 0 ≤ t ≤ T,
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where (FX
t ) is the filtration generated by the process X.

It will then follow from the Cameron–Martin–Girsanov

theory that

My,t = My,0 exp

(

∫ t

0
U ′y,s(dXs − b(Xs, s) ds)

−1
2

∫ t

0
|σ(Xs, s)

′Uy,s|2 ds
)

(12)

for some progressively measurable, Rn-valued process Uy.

PX|Y ( · , y) will then be the distribution of a controlled

process, Xy, satisfying an equation like (10), but with a

different initial law, and with a control term, σσ′(Xs, s)Uy,s,

entering the drift coefficient.
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X̃t = X0+
∫ t

0
b(X̃s, s)ds+

∫ t

0
σσ′(X̃s, s)Uy,sds+

∫ t

0
σ(X̃s, s)dvs

with 0 ≤ t ≤ T .

The use of the progressively measurable control Ũ instead

of Uy will result in a process X̃ having a distribution whose

apparent information relative to [PX, H( · , y)] is greater

than or equal to that of Xy. Thus, at least in part, the

variational characterization of Section 2 will become a

problem in stochastic optimal control.
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It turns out that the Path Estimation Problem can be

solved in the following way:

Run a backward likelihood filter starting at the end time

to estimate the initial distribution of the state. In the

process, some information is dissipated at an optimal

rate governed by the Fisher Information†.

The dissipated information is recovered by running a for-

ward optimal stochastic control problem. The resulting

optimal path-space measure is the conditional path esti-

mator.

†
Mitter, S.K. and Newton, N.J., “Information and Entropy Flow in the Kalman-Bucy Filter,”

J. of Stat. Phys 118 (2005), pp. 145-176.
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3.2. Stochastic Control Problem

Consider the following controlled equation

X̃t = θ +
∫ t

0

(

b(X̃s, s) + a(X̃s, s)u(X̃s, s)
)

ds+
∫ t

0
σ(X̃s, s) dṼs, (13)

where the initial condition, θ, is non-random. Let U be

the set of measurable functions u : Rn× [0, T ] → R
n with

the following properties:

(U1) u is continuous;

(U2) E u = 1, where

u = exp

(

∫ T

0
u′σ(Xθ,0

t , t) dVt −
1

2

∫ T

0
|σ′u(Xθ,0

t , t)|2 dt
)

, (14)

and ( ,F , P ), V and Xz,s are the corresponding

martingales (Girsanov).
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Lemma. If b and σ satisfy the technical hypothesis and

u ∈ U then (13) has a weak solution and is unique in law.

Let (˜, F̃ , (F̃t), P̃ , X̃, Ṽ ) be a weak solution of (13) for

some u ∈ U. We define the cost for controls in U as the

apparent information of the resulting distribution of X̃,

P̃X. This is measured relative to the prior P
θ,0
X (the dis-

tribution of Xθ,0), and Hp(0, T, θ, · , y) [the Hamiltonian:

see Section 3].
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J(u, θ, y) = h(P̃X |P θ,0
X ) + 〈Hp(0, T, θ, · , y), P̃X〉

=
1

2
Ẽ

∫ T

0
|σ′u(X̃t, t)|2 dt− y′Tg(θ) +

1

2
Ẽ

∫ T

0
|g(X̃t)|2 dt

(15)

− Ẽ

∫ T

0
(yT − yt)

′(Lg +Dg)(X̃t, t) dt

if the integrals exist

+∞ otherwise,

where L is the differential operator associated with X,

L =
∑

i

bi
∂

∂zi
+

1

2

∑

i,j

ai,j
∂2

∂zi∂zj
,

and D is the row-vector jacobian operator, D = [∂/∂z1 ∂/∂z2 · · · ∂/∂zn].
The cost functional has a more appealing form in the special case

that the observation path, y, is everywhere differentiable:

J(u, θ, y) =
1

2
Ẽ

∫ T

0

(

|σ′u(X̃t, t)|2 + |ẏt − g(X̃t)|2
)

dt− 1

2

∫ T

0
|ẏt|2 dt.

(16)
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This involves an ‘energy’ term for the control and a

‘least-squares’ term for the observation path fit. These

correspond to the two terms in Bayes’ formula represent-

ing the degrees of match with the prior distribution and

the observation path. The optimal control problem (13),

(16) can be thought of as a type of energy-constrained

tracking problem. The optimal control, under which the

distribution of X̃ is the regular conditional probability dis-

tribution PX|Y ( · , y), is derived in the following theorem.
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Theorem 2 Suppose that b, σ and g satisfy the usual

technical hypotheses, and let the function u∗ : Rn×[0, T ]×
Y → R

n be defined by

u∗ = −(Dv)′, (17)

where v is the value function. Then, for each y ∈ Y,

u∗( · , · , y) belongs to U, and for all θ ∈ R
n, y ∈ Y and

P̃X ∈ P(X ) (not necessarily the distribution of a con-

trolled process),

J(u∗( · , · , y), θ, y) ≤ h(P̃X |P θ,0
X ) + 〈Hp(0, T, θ, · , y), P̃X〉.

(18)
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We now consider the special case in which y is differ-

entiable with Hölder continuous derivative, b and g are

bounded, and there exists an ǫ > 0 such that

z̃′a(z)z̃ ≥ ǫ|z̃|2 for all z, z̃ ∈ R
n. (19)

In this case ρ is continuously differentiable with respect

to s, twice continuously differentiable with respect to z,

and by a standard extension of the Feynman–Kac formula

satisfies the following p.d.e.

∂ρ

∂s
+Lρ+

(

ẏ − 1

2
g

)′
gρ = 0 on R

n×(0, T ), ρ( · , T, y) = 1.

(20)
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Since v = − log(ρ), the value function, v, satisfies

∂v

∂s
+ Lv − 1

2
Dva(Dv)′ −

(

ẏ − 1

2
g

)′
g = 0

on R
n × (0, T ), v( · , T, y) = 0. (21)
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3.3. The Inverse Problem

The variational characterization of the inverse problem

[parts (ii) and (iv) of Theorem 1, Section 3] can also be

applied to the path estimator. This involves choosing a

likelihood function to be compatible with the (given) reg-

ular conditional probability distribution, PX|Y ( · , y). Ear-

lier, we minimized apparent information over probability

measures corresponding to weak solutions of the con-

trolled equation. Here, we maximize compatible infor-

mation over (negative) log-likelihood functions, H̃, that

give rise to posterior distributions of this type.
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Let ( ,F , P ), µ, V , and X be as defined previously. For

each probability measure on R
n, µ̃, with µ̃≪ µ, and each

continuous u satisfying (U2) for all θ, let H̃ be a mea-

surable function such that

H̃(X) = − log





dP̃X

dPX

(X)



+K

(22)

= − log





dµ̃

dµ
(X0)



−
∫ T

0
u′σ(Xt, t) dVt

+
1

2

∫ T

0
|σ′u(Xt, t)|2 dt+K,

where K ∈ R and P̃X is as defined previously.

We shall assume that µY ( · , y) ≪ µ̃. The term K in

(22) is the information in the associated (unspecified)

observation.
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Integral log-likelihood functions of the form (22) can be

thought of as being associated with observations that

are ‘distributed in time’, in that information from them

gradually becomes available as t increases.

The characterization of PX|Y in terms if stochastic con-

trol can be used to express the compatible information

corresponding to H̃, as follows:

G(H̃, y) = K − 〈H̃ , PX|Y ( · , y)〉
= K + h(µY ( · , y) |µ)− h(µY ( · , y) | µ̃) (23)

+
∫ T

0

∫

Rn

(

u∗ −
1

2
u

)′
au(z, t, y)

· PX|Y (χ−1t (dz), y) dt.
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Log-likelihood functions of the form (22) could come

from many different types of observation.

The only constraints placed on u here are that it be

continuous and satisfy (U2) for all θ. We could further

constrain it to take the form

u(z, s) = −(Dṽ)′(z, s, ỹ),
where

ṽ(z, s, ỹ) = − logE exp





∫ T

s

(

˙̃yt −
1

2
g̃(X

z,s
t )

)′
g̃(X

z,s
t ) dt



 ,

for appropriate g̃ and ỹ. This would correspond to ob-

servations of the ‘signal-plus-white-noise’ variety similar

to (11), but with ‘controlled’ observation function and

path, g̃ and ỹ.
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This would show the effects of errors in the observa-

tion function or approximations of the observation path.

Under appropriate regularity conditions ṽ will satisfy the

following partial differential equation:

−∂ṽ
∂t

= Lṽ−1

2
Dṽa(Dṽ)′−

(

˙̃yt −
1

2
g̃

)′
g̃; ṽ( · , T ) = 0. (24)

Thus one interpretation of the inverse problem involves

the infinite-dimensional, deterministic optimal control in

reversed time, with control (g̃, ỹ), and payoff

(g̃, ỹ) =
∫ T

0

∫

Rn
Dṽa

(

u∗ −
1

2
(Dṽ)′

)

(z, t, y)

· PX|Y (χ−1t (dz), y) dt. (25)
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The optimal trajectory for this dual problem, v( · , · , y) is

a time-reversed likelihood filter for X given Y , and the

measure, exp(−v(z, s, y))PX(χ−1s (dz)) is an un-normalized

regular conditional probability distribution for Xs given

observations (Yt − Ys, s ≤ t ≤ T ), which coincides with

that provided by the Zakai equation for the time-reversed

problem. This provides an information-theoretic expla-

nation of the connection between nonlinear filtering and

stochastic optimal control used in †, as well as widening

its scope. A detailed account of this, and the information

processing aspects of nonlinear filters and interpolators

can be found in ∗. For a somewhat different problem

involving optimization over observation functions, see #.
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Extensions to State Process described by

Partial Differential Equation (Lattice)

See recent work of R. Von Handel and collaborators

Infinite-Lattice, Infinite-time Behavior of Filter
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CONCLUSION

• Integration of Stochastic Control and

Information Theory

• Nonequilibrium Statistical Mechanics

• Application Areas

Sensor Networks and Monitoring

Energy Harvesting
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