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Summary Messages:

Model-based Design (MBD)
“Addressing design with computation”

 Time domain simulations rarely lead to design evolution
 More can be done with time domain simulations (wrappers)
 Dynamics matter!
 Continuity needed when modeling at different stages / fidelity
 Models need be appropriate for the intended use and user base
 Uncertainty analysis up front and throughout
 Critical parameter management at all levels
 The decomposability of a system cannot be ignored
 New curricula needed that addresses all of this
 …

We’ll come back to these topics throughout the talk.



Sections
1. Motivation
2. Uncertainty Analysis / Critical parameter 

management
3. Analysis of dynamics
4. Verification
5. Decomposition
6. How its done

- Discussed in the context of either an academic pursuit or 
industry/field collaboration.  
- Lessons learned and opportunities will be discussed for each
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… First, some motivation.
- Buildings

Everything we touch in the western world is a result of energy
- There is a huge potential for advancing humankind by optimizing energy systems
- Unfortunately system theory is only partially used in their design



… First, some motivation.
- Buildings

Commercial and residential buildings are a large portion of the energy sector



Energy Demand



~40% For 
Buildings

57% 
Wasted

17% 
Renewables

Energy Demand



End Use 2008 Annual 
Energy Use (QBTU)

Residential & 
Commercial 
Buildings

18.75 

Lighting 2.01

Transportation 21.63

Cars 8.83

Motivation

 ~30% reduction can be achieved by occupancy based lighting 
control (0.8 QBTU)
 A 47% reduction in buildings energy use will take ALL cars off 
the road!

Source: Buildings Energy Data Book & US EIA

DoD Spends ~3.4Billion Annual on ~1 QBTU
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Energy – Peak Demand
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Approximate breakdown of 
building expenses

 The easy solution to the energy 
problem is to ‘turn the building off’
 Conditioning is needed to:

 Develop products
 Earn degrees
 Sell products
 Heal people (hospitals)
 Maintain computers
 ...

Comfort
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Energy < 5% of expenses



Balance

Thermal 
Comfort

Energy 
Costs



A Grander View, Ontario Canada
- 22Kft^2 office
- 80% Energy savings as recorded in first year
- Most energy efficient office in CA

David Brower Center, Ontario Canada
- 45Kft^2 office / group meetings
- 42.4 % Energy savings as recorded in 11 months.

The Energy Lab, Kamuela Hawaii
- 5.9Kft^2 Educational
- 75% Energy savings compared to CBECS
- 1st year generated 2x electricity that it used

Success
….It can be done



A Grander View, Ontario Canada
- 22Kft^2 office
- 80% Energy savings as recorded in first year
- Most energy efficient office in CA

David Brower Center, Ontario Canada
- 45Kft^2 office / group meetings
- 42.4 % Energy savings as recorded in 11 months.

The Energy Lab, Kamuela Hawaii
- 5.9Kft^2 Educational
- 75% Energy savings compared to CBECS
- 1st year generated 2x electricity that it used

Success

1-off examples

….It can be done



[Lessons Learned from Case Studies of Six High-Performance 
Buildings, P. Torcellini, S. Pless, M. Deru, B. Griffith, N. Long, R. 

Judkoff, 2006, NREL Technical Report.][Frankel 2008]

Modeling:
“….these strategies must be applied together 
and properly integrated in the design and 
operation to realize energy savings. There is no 
single efficiency measure or checklist of 
measures to achieve low-energy buildings. “
Monitoring:
“… dramatic improvement in performance with 
monitoring and correcting some problem areas 
identified by the metering “
Control:
“There was often a lack of control software or 
appropriate control logic to allow the 
technologies to work well together “

Struggle



Thermal Zone

Fresh Air
Hot Water
Chilled water
Refrigerant
Cooling Tower
Controllers

Outdoors

Systems - of - Systems
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Numerous zones in a single building

Loops operate at different time scales

Loops are spread through different spatial scales

Stochastic disturbance on every system

Heterogeneous media (water, air, refrigerant)

Heterogeneous manufacturers / protocols

Systems - of - Systems

Thermal Zone

Fresh Air
Hot Water
Chilled water
Refrigerant
Cooling Tower
Controllers

Outdoors

Systems of systems don’t scale well!
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- There is a huge potential for advancing humankind by optimizing energy systems
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Sangiovanni-Vincentelli, 2007

Design 
Phase

Procurement

Production

Release

RecallCost of design 
change during 
product life 
(redacted)

 Aerospace and automotive systems suffer similar issues
 However, more data available because of ‘fleets / product line’

Aerospace

As with buildings, complexity 
is increasing with time

Cost of correction increases 
strongly with time
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Uncertainty Management and Critical 
Parameter Tracking

Comfort

Energy

First-order cont ributions

par1 par176 par280 par281

Second-order cont ribut ions

par1
par91

par1
par176

par1
par280

par1
par281

par91
par176

par91
par280

par91
par281

par176
par280

par176
par281

par280
par281

out1 Variance

 2.0%  4.2%  8.0%
 3.9%

 1.3%
 1.7%  0.6%  1.1%

 1.1%  1.4%  0.9%67.5%  1.9%  1.3%



Pan, Energy and Buildings 2007

High Rise building in China, modeled in DOE2
After construction and measurement, the models can be assimilated to data

Prediction After Assimilation

Assimilation



Again, even though predictions may be off by 200%, the model can be 
eventually tuned (office building)

Prediction(x)

Data(-)

Assimilation(o)

[Norford, 1994]

Detailed analysis provided insight into what parameters in the model had bad 
assumptions 

Assimilation



Parameter Type Examples

Heating source Furnace, boiler, GSHP etc

Cooling source Chiller, GSHP, etc

AHU Coil parameters etc

Air Loop Fans

Water Loop Pumps

Terminal unit VAV boxes, chilled beams, radiant heating 

Zone external Envelope, outdoor conditions

Zone internal Occupant usage

Sizing parameters Design parameters for zone, system, plant

Fixed in time

Time-varying:

Elevator Usage

Time of day

?

Typical Parameters

Parameter Type Examples

AHU AHU SAT setpoint

Zone internal Internal heat gains schedule

Zone setpoint Zone temp setpoint



Parameter Type Quantity

Material 205

Material:AirGap 34

Material:NoMass 65

People 1201

Lights 1741

ElectricEquipment 1641

ZoneInfiltration:DesignFlowRate 216

ZoneVentilation:DesignFlowRate 559

ZoneMixing 477

ZoneHVAC:Baseboard:Convective:Water 153

ZoneInfiltration:DesignFlowRate 216

ZoneVentilation:DesignFlowRate 559

AirTerminal:SingleDuct:ConstantVolume:FourPipeInduction 1033

Coil:Heating:Water 1096

Coil:Cooling:Water 1196

Fan:VariableVolume 61

AirLoopHVAC 4

Schedule:Compact 2162

Total 12,338

Large models can contain thousands of partially 
certain parameters

Model of T. Maile, E+ annual simulation  
= 51 minutes

Large Models



Even large models can be assimilated to data

….this process takes a long time

Actual

Prediction

* Stanford Y2E2 Building

Assimilated

Large Models
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Create Energy 
Model E+, 
TRNSYS, 
Modelica

Identify key 
parameters, 

perform 
sampling

Calculate 
simulation 

results, study 
uncertainty in 

output

Calculate full 
order meta-

model

Perform 
Sensitivity 
Analysis

• Model Reduction

• Optimization

• Calibration

• Failure Mode 
Effect Analysis

Model-based design flow 
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20-30%

 All non-architectural parameters selected in the model

 Parameters varied 20-30% of their mean (sometimes %75)

 Parameters are varied simultaneously

 There are inequality constraints on some subsets (e.g. a+b < 1)

Distribution types are 
available in literature 
but not applied because 
of the large number of 
parameters

Parameter Selection & Variation
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Random Sampling

Dynamical Systems Sampling

Use chaotic 
dynamics we 
can get much 
better 
sampling 
coverage

 Traditional methods use random 
sampling

 This results in ‘clumps’ in the 
parameter space
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Lorenz Attractor



Θ

Deterministic Sampling

In one dimension:
 Random approach: pick random angles on the 

circle
 Deterministic approach: design a chaotic 

trajectory on a torus



 𝑓 𝑥 = lim
𝑛→∞

1

𝑛
 

𝑘=0

𝑛−1

𝑓 𝑇𝑘𝑥

 𝑓 =
1

𝜇
 𝑓 𝑑𝜇

Deterministic Sampling

𝑇: Measure preserving 
transformation on measure 
space
𝑥: Initial point
 𝑓: Time average
𝜇: Measure
 𝑓: Space average

These 
are 
equal

Ergodic:
 Time average and space 

average distributions are 
equal

 Originated in 1930’s (von 
Neumann)

(𝜅,  𝜔) <
1

𝑐|𝜅|𝑣

𝜅,  𝜔 = 𝜅0𝜔0 + 𝜅1𝜔1 + ⋯+ 𝜅𝑀𝜔𝑀

𝜅 ∈ ℤ,
𝑐, 𝑣 ∈ ℝ+

𝜔𝑖 = Frequencies

Resonance / Anti-resonance 
conditions

Movie of sampling on a taurus
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Deterministic

Monte Carlo

N(-0.92)

N(-0.66)

 Monte Carlo bound ~ 
1

𝑁

 Deterministic bound ~ 
1

𝑁

Faster convergence 
means more 
parameters can be 
studied in the same 
amount of time!

Biggest difference between MC 
& Deterministic is when N is 
large

For whole-building analysis, N must be large

Monte Carlo

Deterministic

[Eisenhower, JBPS 2012]

Convergence Properties

* Work with Igor Mezic



Author(s) # Param. Technique Notes

Rahni [1997] 390->23 Pre-screening

Brohus [2009] 57->10 Pre-screening / ANOVA

Spitler [1989] 5 OAT / local Residential housing

Struck [2009] 10

Lomas [1992] 72 Local methods

Lam [2008] 10 OAT 10 different building types

Firth [2010] 27 Local Household models

de Wit [2009] 89 Morris Room air distribution model

Corrado [2009] 129->10 LHS / Morris

Heiselberg [2009] 21 Morris Elementary effects of a building model

Mara [2008] 35 ANOVA Identify important parameters for 
calibration also.

Capozzoli [2009] 6 Architectural parameters

Eisenhower [2011] 1009 (up 
to 2000)

Deterministic sampling, 
global derivative sensitivity

‘All’ available parameters in building

Scalability

Refinement of old Mathematics leads to discontinuity in tool effectiveness
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Facility Outputs

Averaged Thermal Comfort
Gas Facility
Electricity Facility

Sub-metered
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…. 

 The ‘control’ mechanisms in the 
model drive distributions towards 
Gaussian although others exist as well

Typical Outputs

Nominal model



Influence of Different Parameter 
Variation size

[E+ Drill Hall]

Input Uncertainty @ 20%Input Uncertainty @ 10%

Uncertainty Quantification

Different Inputs:

[Eisenhower, JBPS 2012]



Nominal vs. High Efficiency Design

[Eisenhower, Simbuild 2011]

[E+ DOE Models]

Different Designs:

Uncertainty Quantification
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…

~2000 
parameters

Comfort, 
Energy

…

~2000 
parameters

Comfort, 
Energy

𝑓(𝑥)

Original Model

Meta-Model (model of a model)
(same structure)

Meta-Modeling

 Can test many building 
configurations

 All modeled dynamics exist
 Usually black box
 Expensive evaluations
 Discontinuous functions

 Configurations 
limited to data 
that is used for fit

 Known functional 
form

 Rapid evaluations
 Continuous 

functions



 Support Vector Regression used to create analytical model 
from whole building energy model data

 Analytical model representation (Gaussian Kernel)

where      is kth input parameter sample, 𝛾 and 𝐶𝑘 are fit using 
an optimizer

 Unique minima to the optimization used to identify its 
coefficients (from convexity)

       2 2 20 0 0
1 1, 2 2, 3 3,

1
f ( ) exp ...

N

k k k k

k

C x X x X x X


       x

0
kX

Machine Learning / Regression



Meta-modeling results

…

~2000 
parameters

Comfort, 
Energy

…

~2000 
parameters

Comfort, 
Energy

𝑓(𝑥)

Original Model

Meta-Model
(same structure)

Comfort

Energy



Create Energy 
Model E+, 
TRNSYS, 
Modelica

Identify key 
parameters, 

perform 
sampling

Calculate 
simulation 

results, study 
uncertainty in 

output

Calculate full 
order meta-

model

Perform 
Sensitivity 
Analysis

• Model Reduction

• Optimization

• Calibration

• Failure Mode 
Effect Analysis



1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

x 10
11

0

50

100

150

200

250

Pumps [J]                - Yearly Sum

F
re

q
u
e
n
c
y

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

x 10
8

0

20

40

60

80

100

120

140

160

180

Interior Lighting [J]    - Yearly Peak

F
re

q
u
e
n
c
y

0.5 1 1.5 2 2.5 3 3.5

x 10
11

0

100

200

300

400

500

600

700

Heating [J]              - Yearly Sum

F
re

q
u
e
n
c
y

1600 1650 1700 1750 1800 1850 1900 1950 2000
0

20

40

60

80

100

120

O
c
c
u
rr

e
n
c
e
s

VAV
3
 Availability Manager

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

50

100

150

200

250

300

O
c
c
u
rr

e
n
c
e
s

BLDG
L
IGHT

S
CH

Uncertain Inputs

1600 1650 1700 1750 1800 1850 1900 1950 2000
0

20

40

60

80

100

120

O
c
c
u
rr

e
n
c
e
s

VAV
3
 Availability Manager

Building Model

Uncertain Outputs

?

Uncertainty Quantification

Sensitivity Analysis



1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

6
1.

7

x 
10

11

05010
0

15
0

20
0

25
0

P
um

ps
 [

J]
  

  
  

  
  

  
  

  
- 

Y
ea

rly
 S

um

Frequency

0
.9

0
.9

5
1

1
.0

5
1
.1

1
.1

5
1
.2

1
.2

5

x
 1

0
8

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

In
te

ri
o
r 

L
ig

h
ti
n
g
 [

J
] 

  
 -

 Y
e
a
rl
y
 P

e
a
k

Frequency

0
.5

1
1
.5

2
2
.5

3
3
.5

x
 1

0
1
1

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

H
e
a
ti
n
g
 [

J]
  

  
  

  
  

  
  

- 
Y

e
a
rl
y
 S

u
m

Frequency

 

 

 

 

 

 

High 
Sensitivity

Moderate 
Sensitivity

Low Sensitivity

Same input 
uncertainty

Different 
output 
uncertainty

Impact of sensitive processes



Variance is not always best to describe 
distribution

ANOVA-based approach:

Derivative-based approach:

Functional decomposition
Variance decomposition

Sensitivity indices

Total individual sensitivity

Calculating Sensitivities

12 k

terms



Typically only a 
few parameters 
drive uncertainty 
in output

Sensitivity Indices (examples)
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Model Reduction
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Model Reduction
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Model Reduction

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sorted Parameters

S
e

n
s
it
iv

it
y
 I

n
d

e
x

 

 

All Parameters

Top 20

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.01

0.02

0.03

0.04

Comfort [PMV]

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

 

 

E+ Data

All (1009 param.)

Top 20

Nominal

3500 4000 4500 5000 5500 6000
0

0.01

0.02

0.03

0.04

0.05

Energy [GJ]

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

…

20
parameters

Comfort, 
Energy

𝑓(𝑥)

Meta-Model



Model Reduction

…

7
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Create Energy 
Model E+, 
TRNSYS, 
Modelica

Identify key 
parameters, 

perform 
sampling

Calculate 
simulation 

results, study 
uncertainty in 

output

Calculate full 
order meta-

model

Perform 
Sensitivity 
Analysis

• Model Reduction

• Optimization

• Calibration

• Failure Mode 
Effect Analysis



Optimization

M
o

re
 e

n
er

gy

Best 
design

All building 
designs

Less
comfort

Thermal 
Comfort

Energy 
Costs

Not feasible but 
ideal solution

Original
design

….cost, weight, noise, emissions, sales, productivity, ….



Wetter & Polak 2004

Discontinuity & Uncertainty

Uncertainties in meta-model dealt with by
uncertain cost function weights

Cost= 𝛼1Comfort +𝛼2Energy

[Eisenhower, BSO 2012]

Methods:
1. IPOPT - Primal-Dual Interior Point algorithm with a filter line-

search method for nonlinear programming (Wachter - Carnegie 
Melon / IBM)

2. NOMAD - Derivative free Mesh Adaptive Direct Search
(MADS) algorithm (Digabel - Ecole Polytechnique de Montreal)

Not friendly to 
numerical optimization



Model reduction based on parameter 
type or parameter influence

Rank ordering of parameter sensitivity

Parameters 
collected by type

[Eisenhower, E&B 2012]

Optimization Results

Energy model created

1009 parameters sampled

Subsets of parameters selected 
for different optimization 
experiments

Different cost functions 
evaluated

Compared to traditional 
optimization methods
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Optimization Results

Cost= 𝛼1Comfort +𝛼2Energy



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3

3.5

4

4.5

5

5.5

Baseline

Full Model [1009,C1]

Full Model [1009,C2]

A
n

n
u

a
l 
E

n
e

rg
y
 [

G
J

]

Average Comfort |PMV|

Optimization Results
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Optimization Results

It takes seconds to obtain each of 
these results!

Using the traditional method took 
3 days for one result



Create Energy 
Model E+, 
TRNSYS, 
Modelica

Identify key 
parameters, 

perform 
sampling

Calculate 
simulation 

results, study 
uncertainty in 

output

Calculate full 
order meta-

model

Perform 
Sensitivity 
Analysis

• Model Reduction

• Optimization

• Calibration

• Failure Mode 
Effect Analysis



Analyzing Failures

Failures in buildings often lead to up 30% 
energy waste.
Katipamula, S. and M. R. Brambley (2005,2009)

A 47% reduction in buildings 
energy use will take ALL cars 
off the road!



Analyzing Failures

Hypothesize 
potential failures

Model as meta-
parameters

Invoke 
computationally

Assess 
performance 

impact

Identify 
criticality



Analyzing Failures

Hypothesize 
potential failures

Model as meta-
parameters

Invoke 
computationally

Assess 
performance 

impact

Identify 
criticality

(Image from Kevin Otto)

 In a given system design, modeling and prediction of normal 
operation is challenging but typically straight forward

 For failure analysis, a different mindset is needed, 
hypothesizing what can break is not as straight forward 

 Expert insight is often needed



Analyzing Failures

Hypothesize 
potential failures

Model as meta-
parameters

Invoke 
computationally

Assess 
performance 

impact

Identify 
criticality

Most industrial software modeling packages are 
derived for normal operation

Many aren’t accurate when extremely far from design 
conditions

Wrappers / insight needed to appropriately map 
system-wide failures into standard simulations

Mis-calibrated sensing:
Additive, multiplicative bias? 
Noise? Correlated?

Broken actuation:
Constant or functional 
performance degradation? 

Erratic user behavior:
Extreme input disturbance, 
stochastic?

Pump Impeller Broken:
Change in delta P, change in 
flow, change in efficiency

Failure 
Mode [0-1] Many physical 

parameters[x-y]



Analyzing Failures

Hypothesize 
potential failures

Model as meta-
parameters

Invoke 
computationally

Assess 
performance 

impact

Identify 
criticality

 Failures must be assessed combinatorially
 Sampling and parameter implementation is variable (not 
binary) 
 Function needs to be created on provides a mapping from 
a uniform distribution to a long tail distribution (which is 
expected for failed state, un-failed state ~90% of the time)
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Analyzing Failures

Hypothesize 
potential failures

Model as meta-
parameters

Invoke 
computationally

Assess 
performance 

impact

Identify 
criticality
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Uncertainty analysis and failed analysis 
have different distribution types.  Analysis 

needs to be tailored for this behaviour

Energy model created

533 individual 
component 

failures 
postulated 

Failure modes 
mapped to real 

parameters 

Sample 
simulations 
performed

Case Study:  DoD building
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Analyzing Failures

Hypothesize 
potential failures

Model as meta-
parameters

Invoke 
computationally

Assess 
performance 

impact

Identify 
criticality

 Sensitivity analysis performed between long tail distributions 
and failure mode parametric variation

 Second order effects (combinatorial) identified as most 
critical in many failed states

Output 9: Heating Annual 
Consumption

Boiler gas/air 
flow 
restricted/lea
ks

AHU2 
Econ. OA 
damper 
fails open

Zone 7 T-
stat 
improperly 
located

Nightsetpt
temperature 
set 
incorrectly

Lighting not 
turned off at 
night

Total Sensitivity 0.09 0.05 0.81 0.84 0.12

First Order 0.02 0.04 0.08 0.04

Boiler gas/air flow restricted/leaks 0.01 0.02 0.01 0.01

AHU2 Economizer OA damper fails 
open 0.01 0.01 0.01

Zone 7 Thermostat improperly 
located 0.67 0.02

Nightsetpoint temperature set 
incorrectly 0.01

Lighting not turned off at night

First-order cont ributions

par1 par176 par280 par281

Second-order cont ribut ions

par1
par91

par1
par176

par1
par280

par1
par281

par91
par176

par91
par280

par91
par281

par176
par280

par176
par281

par280
par281

out1 Variance

 2.0%  4.2%  8.0%
 3.9%

 1.3%
 1.7%  0.6%  1.1%

 1.1%  1.4%  0.9%67.5%  1.9%  1.3%

* GoSUM software[Otto & Eisenhower, Simbuild 2012]



Summary Messages:

Model-based Design (MBD)
“Addressing design with computation”

 Time domain simulations rarely lead to design evolution
 More can be done with time domain simulations (wrappers)
 Dynamics matter!
 Continuity needed when modeling at different stages / fidelity
 Models need be appropriate for the intended use and user base
 Uncertainty analysis up front and throughout
 Critical parameter management at all levels
 The decomposability of a system cannot be ignored
 New curricula needed that addresses all of this
 …

We’ll come back to these topics throughout the talk.



Software: Identification, creation, and standardization of industry-accepted models in 
other domains
- Airframe hardware, security systems, biological engineering, …
- Evolution of a design flow such as this on academic models is of only little use

Uncertainty Analysis:  A sample-based approach was given, is this the best?  Should 
the UA approach be problem specific, what are the key concerns in tool choice?  Is 
there a single tool for all?

Expert Insight:  The methods here are fairly automated but some expertise is needed 
(e.g. for setting up potential fault tables), what kind of automation can we get away 
with?

Curricula:  Many industrial model-based design studies end with time simulations,  
Why?  Curricula usually ends with time domain simulations.  An expanded view is 
needed.

Open Opportunities



Sections
1. Motivation
2. Uncertainty Analysis / Critical parameter 

management
3. Analysis of dynamics
4. Verification
5. Decomposition
6. How its done
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Weather

Annual

Daily

Hourly

Yuan 2010

Dynamics Matter

Spectrum of a decade of local weather

1) Overlapping timescales dynamics/disturbance 2) Multiple steady states

Building response

Flip between buoyancy 
and wind driven natural 
flows



3 units heat 
(ambient air)

CO2 heat pump

4 units hot 
water

1 unit electricity

~1 unit hot 
water

1 unit electricity

Electric

0.8 units hot 
water

1 unit gas

0.2 units waste 
heat

Gas

Opportunity:
4x improvement in efficiency 

relative to conventional 

systems

COP ~ 1.0

COP ~ 4.0

COP ~ 0.8

COP = Useful Energy Out
Costly Energy In

CO2 Heat Pump



Evaporator

Gas Cooler

Compressor

Suction 
Accumulator

Expansion 
Valve

Pump

Fan

Cold 
Water In

Hot 
Water 
Out

External Storage Tank 
(1000 liter+)

T

T

CO2 Heat Pump & Hot Water Loop



Evaporator

Gas Cooler

Compressor

Suction 
Accumulator

Expansion 
Valve

Pump

Fan

Cold 
Water In

Hot 
Water 
Out

External Storage Tank 
(1000 liter+)

T

T

Continuous 
Control

P

T

T

On-Off
Control

CO2 Heat Pump - Control



CO2 R134

Pressure & Temperature NOT Dependent Pressure & Temperature Dependent

Example Operating Cycles of a Heat Pump with Different Refrigerant

 Compressor load is strong function of height of the blue 
polygon

 Transcritical cycle provides a way to decouple desired 
output (temperature on top of polygon) with the height

 New degree of freedom for optimization is now available

CO2 Heat Pump – New Features



Cold 
water

Hot & steamy air

http://www.made-in-china.com

Cool & dry air

Hot water

CO2 Heat Pump - Installed

Commercial 
Kitchen



CO2 Heat pump transient dynamics (movie) in one case, the transient settles 
at an efficient equilibrium, in the other case, it settles at a very inefficient 

equilibrium.  In both cases, the output control variable reaches the desired 
setpoint.

CO2 Heat Pump – Controlled Response

*This is a movie 

Sensed 
variable

Performance 
metric



𝜕𝐴𝜌

𝜕𝑡
+
𝜕  𝑚

𝜕𝑧
= 0

𝜕 𝐴𝜌ℎ − 𝐴𝜌

𝜕𝑡
+
𝜕  𝑚ℎ

𝜕𝑧
= 𝜋𝐷𝛼(𝑇𝑤 − 𝑇)

Mass and Energy Balance for fluid in a walled-pipe

𝜏𝑒𝑓
𝑑 Δℎ𝑒

𝑑𝑡
= −  𝑚𝑓Δℎ𝑒 + 𝛼𝑒𝑓 𝑇𝑒𝑤 − 𝑇𝑒𝑓

𝜏𝑒𝑤
𝑑 𝑇𝑒𝑤
𝑑𝑡

= −𝛼𝑒𝑓 𝑇𝑒𝑤 − 𝑇𝑒𝑓 + 𝛼𝑎(𝑇𝑎𝑖 − 𝑇𝑒𝑤)

𝜏𝑤𝑜

𝑑 𝑇𝑤𝑜

𝑑𝑡
= −  𝑚𝑤𝑐𝑝𝑤 𝑇𝑤𝑜 − 𝑇𝑤𝑖 − 𝛼𝑔𝑤(𝑇𝑤𝑜 − 𝑇𝑔𝑤)

𝜏𝑔𝑤
𝑑 𝑇𝑔𝑤

𝑑𝑡
= 𝛼𝑔𝑤(𝑇𝑤𝑜 − 𝑇𝑔𝑤) +  𝑚𝑓(Δℎ𝑐 + Δℎ_𝑒)

Evaporator Dynamics

Under a few assumptions about the pressure drops, time scale separation in density 
and energy dynamics, ODE’s can be developed

Gas Cooler Dynamics

 Time constants become complex from spatial 
reduction

 Dynamics are coupled by:
Compressor statics (adds heat)
Expansion statics (adiabatic)

 𝛼 = Heat Transfer Coefficients

[Eisenhower ‘04, Eisenhower ‘09]

CO2 Heat Pump - Modeling



Liquid Gas

Quality
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Increasing Mass Flow

Modified Bennet-Chen relation All Liquid Liquid & Gas All Gas

Heat Transfer Coefficient

Evaporator Characteristic Equation

Multiple equilibria



Branch Descriptions
1-2) Stable Branch
2-6) Unstable Branch
6-8) Stable Branch

Solution Points
2) Fold
5) Fold
6) Hopf Point

1
2

3 4

2

3

Control Variable (water flow)

Ev
ap

. E
n

th
al

p
y 

C
h

an
ge

[US 6,813,895, US 7,171,820, US 7,127,905, US 7,010,925, US 7,225,629, US 6,993,921
Eisenhower 2005, 2007, 2009]

Bifurcation Analysis 

Insight into a nonlinear controller 
that provides robust efficient 
operation obtained from model 
and tested on prototype

𝜕𝐴𝜌

𝜕𝑡
+
𝜕  𝑚

𝜕𝑧
= 0

𝜕 𝐴𝜌ℎ − 𝐴𝜌

𝜕𝑡
+
𝜕  𝑚ℎ

𝜕𝑧
= 𝜋𝐷𝛼(𝑇𝑤 − 𝑇)

Physic-based modeling



Summary Messages:

Model-based Design (MBD)
“Addressing design with computation”

 Time domain simulations rarely lead to design evolution
 More can be done with time domain simulations (wrappers)
 Dynamics matter!
 Continuity needed when modeling at different stages / fidelity
 Models need be appropriate for the intended use and user base
 Uncertainty analysis up front and throughout
 Critical parameter management at all levels
 The decomposability of a system cannot be ignored
 New curricula needed that addresses all of this
 …

 Dynamics matter!  Without analysis of dynamics unfortunate steady state’s may have 
been found too late

 Time domain simulation would not have led to the amount of insight gained from 
bifurcation analysis with the CO2 problem

 With proper wrappers, time domain simulation can be used to gather information 
regarding uncertain dynamics

 Abstraction of industry problems leads to collaboration and scientific discovery



Open Opportunities

 Which products get a deeper analytical treatment of their 
dynamics?  When is excel engineering enough?

 Continuation methods on detailed models are getting old, what 
else is there?

 Curricula past introductory dynamics – industrial dynamics? 



Sections
1. Motivation
2. Uncertainty Analysis / Critical parameter 

management
3. Analysis of dynamics
4. Verification
5. Decomposition
6. How its done



http://sdm.mit.edu/

Design Flow



http://sdm.mit.edu/

MIL

SIL

HIL

Design Flow

Model-based design tools



Hardware in the 
Loop is a 
methodology for 
verifying controlled 
systems prior to 
full blown system 
testing

By testing the 
software and its 
implementation on 
the control 
hardware 
implementation 
issues and 
surprises can be 
assessed 

Hardware-in-the-Loop (HIL)



Goal:  Modify Carrier controller for supervisory needs

Capstone MicroTurbines
Gas -> Electricity and hot exhaust
Capstone control system

Carrier Chiller
Gas fired burner -> Cold / hot water
Carrier control system

UTRC PureComfort CHP

+

Carrier 
Controller

Capstone
Controller

…Two different control systems, one common function

UTC PureComfort™ CHP System



Adjust to operation of chiller to different heat 
source:
1. Micro-turbines at full power all 4 micro-

turbines on
2. Micro-turbines load following

a) All 4 micro-turbines running with power 
fluctuations below 60kW

b) 1-2 micro-turbines turned on/off with power 
fluctuations greater than 60kW

c) All 4 micro-turbines shut down 

3. Include Damper Valve Model 
4. Start/Stop Procedures

a) Chiller does not start if all 4 micro-turbines 
are turned off

b) Chiller shuts down safely if all 4 
c) micro-turbines are shut down

5. Refine Protective Limits and Alarms

…necessary changes take many months to 
implement, many more to test/certify

Necessary Controller Changes
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System Level Model

Subcomponent Level Models
Conservation Equations

Component Level Models

//Dynamic Mass Balance

M_x = transposex*M;  

for i in 1:nspecies loop

derM_x[nspecies] = summdot_x[:, nspecies]

end if;

//Dynamic Energy Balance

U = M*h - p*Vt;

derU = sumqdot + sumheat.Q_s + sumheat.W_loss;

// Volume conservation  

M[1] = d[1]*V[1];

LiBr Modelica component libraries built in collaboration with SJTU
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282 e.y[11] chiller.Tchw out
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306

308

e.y[12] chiller.Tcw out

Sensor to model validation

Modelica Modeling for H-I-L



x += x

Fast

x += x

Slow

http://www.mm.bme.hu/IDEAS14/logo.jpg

 𝑥 = 𝑓(𝑥, 𝑝, 𝑢, 𝜀)

Efficiency:
Analytical

(modeling paradigms)
Numerical

(localization)
Computational 

(solvers)

Modeling and Reduction for RT sim.



PureComfort
System Model

Realtime computation

Carrier 
Controller

Actuators

Sensors

HIL Experimentation Environment

~ =

…necessary changes take many months to 
implement, many more to test/certify

Adjust to operation of chiller to different heat 
source:
1. Micro-turbines at full power all 4 micro-

turbines on
2. Micro-turbines load following

a) All 4 micro-turbines running with power 
fluctuations below 60kW

b) 1-2 micro-turbines turned on/off with power 
fluctuations greater than 60kW

c) All 4 micro-turbines shut down 

3. Include Damper Valve Model 
4. Start/Stop Procedures

a) Chiller does not start if all 4 micro-turbines 
are turned off

b) Chiller shuts down safely if all 4 
c) micro-turbines are shut down

5. Refine Protective Limits and Alarms

Necessary Controller Changes

http://www.dspace.de/ww/en/pub/home.htm
http://www.dspace.de/ww/en/pub/home.htm


Summary Messages:

Model-based Design (MBD)
“Addressing design with computation”

 Time domain simulations rarely lead to design evolution
 More can be done with time domain simulations (wrappers)
 Dynamics matter!
 Continuity needed when modeling at different stages / fidelity
 Models need be appropriate for the intended use and user base
 Uncertainty analysis up front and throughout
 Critical parameter management at all levels
 The decomposability of a system cannot be ignored
 New curricula needed that addresses all of this
 …

 Verification needed to accelerate product development through by adding feedback and 
robustness to the design process 
 Identify unexpected behavior, track alignment with requirements, test matrix outside of lab 

conditions
 Common semantics and well defined interfaces are needed for models as it is likely they will be a 

collaborative effort
 To avoid surprises, re-work, and other discontinuities, use of one model platform is useful – model 

reduction, abstractions or other methods are used to preserves design flow



 Automation:  From industrial design tools to real time simulation is 
often a big step.  Some wrappers and numerical routines have 
been established more efforts in co-simulation and applied model 
reduction are needed (e.g. to low level audiences).

 Common semantics and well defined interfaces are needed for 
models as it is likely they will be a collaborative effort

 To avoid surprises, re-work, and other discontinuities, use of one 
model platform is useful – model reduction, abstractions or other 
methods are used to preserves design flow

 Accessibility to non experts

Open Opportunities



Sections
1. Motivation
2. Uncertainty Analysis / Critical parameter 

management
3. Analysis of dynamics
4. Verification
5. Decomposition
6. How its done



Requirements Architecture

Model Based 
Design

Design 
Process and 
Flow

Elements of Systems Engineering





Requirements Architecture
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Flow

Elements of Systems Engineering





Recent research areas: Big Data, complexity, graph analysis, interconnectivity, … 

Driven by ease in manufacturing, higher efficiencies, greater robustness …

Defn:  If a system is complex – it is decomposable.  If this is fact is not used in 
design, optimization, computation, analysis you are ignoring something very 
important



“A generic complex system”

Integrated Gasification Combined 
Cycle, or IGCC, is a technology that 
turns coal into gas into electricity

Clustering essential dynamics



Clustering essential dynamics

Integrated Gasification Combined 
Cycle, or IGCC, is a technology that 
turns coal into gas into electricity

“A generic complex system”
Critical path, without this nothing can happen 
– everything else is safety and 
regulation/control of process efficiencies



Decomposition Studies:
1. Identifying critical uncertainty flows

2. Partitioning state dynamics

3. Modal design

4. Modal extraction from data
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Uncertainty Quantification

Sensitivity Analysis



Facility 
Electricity

Intermediate Consumption
Variables

Input 
Parameter 
Types

Nodes are subsystems.  Circle around each node is its uncertainty in 
energy consumption.  Edges are weighted by sensitivity.
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All Data

Supply air temp setpoint

Chiller1 reference COP

Drill deck lighting schedule 

AHU2 return fan maximum flow rate

AHU2 supply fan efficiency

AHU2 supply fan pressure rise

AHU1supply fan efficiency

AHU1 supply fan pressure rise

Chiller1 optimum part load ratio

[Eisenhower, JBPS 2010]

Circles: Uncertainty at 
each node
Line Thickness: 
‘conductance’

Clustering Essential statics



Decomposition Studies:
1. Identifying critical uncertainty flows

2. Partitioning state dynamics

3. Modal design

4. Modal extraction from data
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Detailed Energy Software

Detailed Whole-Building 
Model
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Unsorted A-matrix interconnections

Sorting Essential Dynamics

State-space dynamics

Information about how 
~1000 differential equations 
is hidden in this matrix
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Ext Bound Air

Ext Bound GND

Inside of Cons.

Zone Air 1

Zone Air 2

Zone Air 3

Surf. of Cons.

Free Int. Mass

 𝐴 =
1

2
𝐴 + 𝐴𝑇

𝑊𝐵𝑖𝑛 =  
1 𝑖𝑓 𝐴 ≠ 0
0 𝑖𝑓 𝐴 = 0

𝐿 = deg 𝑊 −𝑊

Clustering

 𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

Toutdoors

Tground

THVACsupply

Twindow surface

Tzones(x18)

Internal States 
(x1056)

Second eigenvector 
with state ‘type’

Test case: 
Medium office building, 53 
kft2, 18 zones

Binary adjacency matrix 
defined from analytic 
linearized form of full 
EnergyPlus model:

Spectral clustering 
used to map 
interconnectedness of 
the dynamics
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Unsorted A matrix 
interconnections

Zone 
air 
states

Construction 
surface states

Sorted based on 
interconnection matrices

A matrix of 
Dynamics in 
an EnergyPlus
model

Uncertainty in spectral gap of 
the graph Laplacian 
illustrates robustness of 
interconnectivity of energy 
dynamics

Clustering Clustering leads to: parallelization of analysis / computation / 
control / diagnostics



Decomposition Studies:
1. Identifying critical uncertainty flows

2. Partitioning state dynamics

3. Modal design

4. Modal extraction from data
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Effect of Symmetry

Normal operation leads 
to instability observed 
by rotating acoustic 
waves



Increase in Flame

x
x

x
x

x
x

x
x

Eigenvalues vs. Coupling (flame)

No feedback

Always 

detrimental!

The heat release (flame) causes a 
coupling which de-stabilizes the 
system causing noise....but the flame 
is needed for the engine to run

Optimal Wavespeed Pattern

)(xfx



+
n

Rotating Combustion Instability: Analysis

The 1-D transport 
equations couple 
pressure, velocity, 
and heat release



Analysis of energy coordinates (Action-Angle) 
highlights funneling of energy to specific low 
order modes in the system

Complex stability analysis of jet engine noise 
abstracted to nonlinear analysis of a few 
modes
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[Eisenhower and I. Mezic Physical Review E, 2010]

Decomposition Methods - Cascade

[Y. Lan and I. Mezic On the Architecture 
of Cell Regulation Networks, BMC 
Systems Biology 2011]

System dynamics is right
coordinates make a 
difference



Destabilize by Necessity Restabilize by Design

[Eisenhower, Hagen, Banaszuk and Mezic Journal of Applied Mechanics Jan. 2009]

[US 8037688 B2]

Rotating Combustion Instability: Fix

Transport equations 
projected onto first Fourier 
Modes



Decomposition Studies:
1. Identifying critical uncertainty flows

2. Partitioning state dynamics

3. Modal design

4. Modal extraction from data
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Typical Building Response



Mathematical Preliminaries

The Koopman operator U is an infinite 
dimensional operator that maps g to Ug

Begin with an arbitrary finite dimensional 
nonlinear function/system/model (f)

The goal is to find the dynamical properties (spectral 
content, orthonormal basis, etc.) of the operator Ug

[Mezic 2005, Nonlinear Dynamics]

Model or Data

M is an arbitrary manifold

Actual sensed variables



Typical Building Response



Comparison between extensive EnergyPlus model and data

Data

Model

Spectrum Magnitude

[Eisenhower, Simbuild 2010]

Model Tuning



 Method quickly 
isolates sensor / 
control issues

Energy at unexpected 
frequencies

 Cycling found in 
control system

 System retuned to 
reduce cycling

Spectral Approach



 Out-of-phase controller response one 
heating, one cooling is usually indicative 
of inefficient operation

 One Island East – Westlands Rd. Hong Kong
 70 story sky-scraper
 Data: 11/1/2009 – 11/15/2009

N

* With Walter Yuen, Hong Kong Poly. Univ.

Hong Kong Diagnostics



Summary Messages:

Model-based Design (MBD)
“Addressing design with computation”

 Time domain simulations rarely lead to design evolution
 More can be done with time domain simulations (wrappers)
 Dynamics matter!
 Continuity needed when modeling at different stages / fidelity
 Models need be appropriate for the intended use and user base
 Uncertainty analysis up front and throughout
 Critical parameter management at all levels
 The decomposability of a system cannot be ignored
 New curricula needed that addresses all of this
 …

 Decomposition can be performed on industry standard models that engineers 
are comfortable with to assess: 

• common architectures, fragility of the architecture dynamics, optimized 
design or control

 Analytical study (combustion) leads to new science and deeper understanding
 Data based analysis is helpful for diagnostics and post design analysis



 Automation:  From industrial design tools to decomposed physics 
is a big step.  Modeling techniques and analysis tools to drive 
commonality are needed 

 More tools for transforming mathematical interconnectedness to 
product architecture is needed

 Curricula (outside CS departments) needed for system 
decomposition methods, interconnectedness needs to be taught 
not just let to happen

Open Opportunities



Sections
1. Motivation
2. Uncertainty Analysis / Critical parameter 

management
3. Analysis of dynamics
4. Verification
5. Decomposition
6. How its done



How it is done

1.Initiatives
2.Funding
3.Policy
4.Field engagement
5.Curricula



Ed Mazria’s
challenge to get 
companies, govt, 
product 
manufactures to 
make Carbon 
Neutral Buildings by 
2030

Initiatives (Energy)

US: $25 Billion 
funding for energy 
efficiency (not solely 
buildings)
2009



NSF FY 2014 Priorities:
$300 Million - Cyber-enabled Materials, Manufacturing, and Smart Systems
… transform static systems, processes, and edifices into adaptive, pervasive “smart” systems with embedded computational intelligence
that can sense, adapt, and react

$155 Million - Cyber-infrastructure framework for 21st Century Science, Eng. and Edu
$25 Million - NSF Innovation corps
$63 Million - Integrated NSF support promoting Interdisciplinary R&Edu
$223 Million - Science, Engineering, and Education for Sustainability (SEES)
… SEES uses a systems-based approach to understanding, predicting, and reacting to change in the linked natural, social, and built environment and 
addresses challenges in environmental and energy research and education

$110 Million - Secure and trustworthy cyberspace

Darpa FY 2014:
$72 Million CCS-02: MATH AND COMPUTER SCIENCES
in new computational models and mechanisms for reasoning and communication in complex, interconnected systems.

$106 Million   IT-02: HIGH PRODUCTIVITY, HIGH-PERFORMANCE RESPONSIVE ARCHITECTURES 
ability to design complex defense and aerospace systems that are correct-by-construction.

$86 Million TT-13: NETWORK CENTRIC ENABLING TECHNOLOGY
Technical challenges include the need to process huge volumes of diverse, incomplete, and uncertain data streams in tactically-relevant 
timeframes

Federal:

Initiatives



DOE FY 2014:
$169 Million Electricity Delivery and Energy Reliability
electric grid modernization and resiliency in the energy infrastructure while working to enable innovation across the energy sector.  
Improved modeling and self healing / reliable systems

$379 Million  Advanced Research Projects Agency – Energy (ARPA-E)
Transformational technologies with clear commercialization path

$2.775 Billion Energy Efficiency and Renewable Energy 
… technologies, tools, and approaches that overcome grid integration barriers   …timely, affordable access to physical and virtual tools, and 
to demonstrate new materials and critical processes to advance the use of clean energy manufacturing technologies for industry.

Federal:

Initiatives



State (just two):

New York State Energy Research and Development Authority (NYSERDA)
FY 2014:  $424 Million (57%) in energy efficiency programs 
The 2014 Draft State Energy Plan envisions and drives toward an energy system that is more clean, flexible, affordable, 
resilient, and reliable. 

- Not all of this money is allocated for systems engineering R&D, however:

Advanced Buildings Consortium ($7.5 Million over 5 years)
The Advanced Buildings Consortium (ABC) will have a central technology theme in which to focus its efforts for improving 
energy efficiency and “resiliency, recoverability, and adaptability” (hereafter resiliency) of buildings to infrastructure 
disruptions. 

California Energy Commission (CEC)
1996-2012 CA Energy Commission supported $884 Million ($1.4 Billion after matching) in innovative and clean energy R&D

The California Public Utilities Commission approved a total of $162 million annually beginning January 1, 2013, and continuing 
through December 31, 2020 (20% managed by IOU’s)

2015-2017:  $152 million Applied R&D, $145 million Technology demonstration & deployment, 
$53 million in market facilitation
Applied R&D Topics 1)  EE & Demand Response, 2) Clean generation, 3) Smart Grid 4) Cross cutting

Initiatives

Funds allocated to in-state institutions while supporting out-of-state collaboration



Policy

Academic pursuit

Degrees

Citations

Service

Policy
Industry direction

Talent

Primary Output Secondary Output

Opportunity to shape policy exists through government (state/fed) & industry collaboration

(One of many 
influences)



How it is done

1.Initiatives
2.Funding
3.Policy
4.Field engagement
5.Curricula



Academia

• Teaching

• Next Year

Industry

• Defining

• Today

Field

• Learning

• Yesterday

System 
Engineering 
Collaboration

Timescales and 
focus on different 
outcome



Academia

• Teaching

• Next Year

Industry

• Defining

• Today

Field

• Learning

• Yesterday

System 
Engineering 
Collaboration

Lubrication

Patience
Abstraction

Pace/persistence

Trust



Student Health:
$75K saved in equipment replacement
$36K savings/year in operation
Comfort complaints are gone

Student Resources Building:
44% hot water reduction
16.5% total building energy savings
Occupant outreach on operations

Pollack Theater:
Model-based control tuning
20F oscillations mitigated
Better occupant comfort

Engineering Sciences Building:
Clean room operation assessed
Natural ventilation control strategies

Living Laboratories



Student Health:
$75K saved in equipment replacement
$36K savings/year in operation
Comfort complaints are gone

Living Laboratories
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UCSB Student Health Center

38K ft2 (3500 m2) Outpatient facility built in the early 1970’s



Building location and climate

170



Initial Conditions

Energy
Of Student Affairs buildings, the student health building had the largest 
consumption per square foot

Boiler systems were not delivering enough capacity, new boiler slated to be 
purchased

Comfort
Medication inside an indoor refrigerator had to be thrown away at times because of 
high temperatures

Many space heaters used, general complaints about poor temperature regulation

Operations
The building ‘can not be turned off’.  Turning the HVAC system down at night would 
result in discomfort up until mid-day the next day.  It is unoccupied 19:00-07:00.



Black: 
no 
sensor 
added

Because of age, there were no comfort 
measurements (pneumatic systems)

Primary systems are sensed but not saved

82 Wireless temperatures added to 
gather comfort data from the building

Lack of Data
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Wireless data confirms issues with comfort management

82 wireless 
temperatures 
sensors 

~5days data



Modeling

Modeled by 
‘untrained’ experts



[Bhamornsiri & Eisenhower, 2013]

Model Assimilation 85 wireless 
sensors

85 model 
zones

Rigorous model tuning
- Co-simulation
- Uncertainty / sensitivity
- Stochastic



Results

1. R&R Boilers, increase energy 
efficiency saving the need to 
replace / upgrade

2. Set unoccupied times at night for 
systems

3. Optimize start / stop times

Immediate savings:  $50K
Annual savings: $50K
ROI (before project end)
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New Data



82 wireless sensors measure comfort in various rooms in the building
During October there were periods of extreme overheating because of startup 
procedures, these are fixed now

Results

Overshoot 
during startup

82 Temperatures
Red is occupied hours

Before After Re-commissioning
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Output
Energy Savings Research



Scaling / Codification
More Data ~ 100 utility pts.

More People (~40)

More Buildings (15 at once)

Archiving (Notes)

Scaled initiative driven by field 
collaborators after pilot!



 Systems engineering is supported by many initiatives / funding 
agencies

 Academic research can have a greater influence if integrated 
with policy decisions

 Collaboration with field / industry takes patience and trust 

Summary



 Highlight systems engineering needs -> more funding in this area

 Challenges in system engineering could be illustrated better to 

policy makers

 Closer collaboration within universities and local municipalities on 

projects and curricula

Open Opportunities



Summary Messages:

Model-based Design (MBD)
“Addressing design with computation”

 Time domain simulations rarely lead to design evolution
 More can be done with time domain simulations (wrappers)
 Dynamics matter!
 Continuity needed when modeling at different stages / fidelity
 Models need be appropriate for the intended use and user base
 Uncertainty analysis up front and throughout
 Critical parameter management at all levels
 The decomposability of a system cannot be ignored
 New curricula needed that addresses all of this
 …
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