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About the Lecture
Duration: Monday, 17. Feb 2014 – Friday, 28. Feb 2014
Credits: 6 credits for passing the exam
Exercises: Computer excercises, ETZ D61.1/2
Exam: Fri, 14. March 2014 (written), Location: tba

Week 1:

Date Topic Lectures ExercisesTime Location
Mon, Feb 17 Linear Systems I 9.15 – 12 HG E3 13.15 – 17
Tue, Feb 18 Linear Systems II 9.15 – 12 HG E3 13.15 – 17
Wed, Feb 19 Optimization I 9.15 – 12 HG D16.2 13.15 – 17
Thu, Feb 20 Optimization II 9.15 – 12 HG D16.2 13.15 – 17
Fri, Feb 21 Introduction to MPC 9.15 – 12 HG E3 13.15 – 17
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Fri, Feb 28 Advanced Topics II 9.15 – 12 HG D16.2 —

Manfred Morari Model Predictive Control Spring Semester 2014

MM

MM



Model Predictive Control
Part I – Introduction
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3 Summary and Outlook 3.2 Literature

Literature

Model Predictive Control:
Predictive Control for linear and hybrid systems, F. Borrelli, A. Bemporad, M.
Morari, 2013 Cambridge University Press
[http://www.mpc.berkeley.edu/mpc-course-material]

Model Predictive Control: Theory and Design, James B. Rawlings and David
Q. Mayne, 2009 Nob Hill Publishing
Predictive Control with Constraints, Jan Maciejowski, 2000 Prentice Hall

Optimization:
Convex Optimization, Stephen Boyd and Lieven Vandenberghe, 2004
Cambridge University Press
Numerical Optimization, Jorge Nocedal and Stephen Wright, 2006 Springer
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1 Concepts
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1 Concepts 1.1 Main Idea

Main Idea

Objective:
Minimize lap time

Constraints:
Avoid other cars
Stay on road
Don’t skid
Limited acceleration

Intuitive approach:
Look forward and plan path
based on

Road conditions

Upcoming corners

Abilities of car

etc...
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1 Concepts 1.1 Main Idea

Optimization-Based Control

Minimize (lap time)
while avoid other cars

stay on road
...

Solve optimization problem to
compute minimum-time path
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1 Concepts 1.1 Main Idea

Optimization-Based Control

Minimize (lap time)
while avoid other cars

stay on road
...

Solve optimization problem to
compute minimum-time path
What to do if something
unexpected happens?

We didn’t see a car around

the corner!

Must introduce feedback

C. Jones† , F. Borrelliú , M. Morari Model Predictive ControlPart I – Introduction Spring Semester 2014 1-3



1 Concepts 1.1 Main Idea

Optimization-Based Control

Minimize (lap time)
while avoid other cars

stay on road
...

Solve optimization problem to
compute minimum-time path
Obtain series of planned control
actions
Apply first control action
Repeat the planning procedure
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1 Concepts 1.1 Main Idea

Model Predictive Control

P(s)%

Objectives Model Constraints

Plant
Optimizer




Measurements 

Output  Input  Reference  

Objectives Model Constraints

PlanDo

PlanDo

PlanDo
Time

Receding horizon strategy introduces feedback.
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1 Concepts 1.2 Classical Control vs MPC

Table of Contents
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1 Concepts 1.2 Classical Control vs MPC

Two Di�erent Perspectives

Classical design: design C

Dominant issues addressed
Disturbance rejection (d æ y)
Noise insensitivity (n æ y)
Model uncertainty

(usually in frequency domain)

MPC: real-time, repeated optimiza-
tion to choose u(t)

Dominant issues addressed
Control constraints (limits)
Process constraints (safety)

(usually in time domain)
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1 Concepts 1.2 Classical Control vs MPC

Constraints in Control
All physical systems have constraints:

Physical constraints, e.g. actuator limits
Performance constraints, e.g. overshoot
Safety constraints, e.g. temperature/pressure limits

Optimal operating points are often near constraints.
Classical control methods:

Ad hoc constraint management
Set point su�ciently far from constraints
Suboptimal plant operation

Predictive control:
Constraints included in the design
Set point optimal
Optimal plant operation

Optimal Operation and Constraints

PSfrag replacements

constraint

set point
time

ou
tp

ut Classical Control
No knowledge of constraints

Set point far from constraints

Suboptimal plant operation

PSfrag replacements

constraint

set point
time

ou
tp

ut Predictive Control

Constraints included in design

Set point closer to optimal

Improved plant operation

4F3 Predictive Control - Lecture 1 – p.3/11
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1 Concepts 1.3 Mathematical Formulation
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1 Concepts 1.3 Mathematical Formulation

MPC: Mathematical Formulation

U

ú
t (x(t)) := argmin

Ut

N≠1ÿ

k=0
q(xt+k , ut+k)

subj. to xt = x(t) measurement
xt+k+1 = Axt+k + But+k system model
xt+k œ X state constraints
ut+k œ U input constraints
Ut = {u0, u1, . . . , uN≠1} optimization variables

Problem is defined by
Objective that is minimized,
e.g., distance from origin, sum of squared/absolute errors, economic,...
Internal system model to predict system behavior
e.g., linear, nonlinear, single-/multi-variable, ...
Constraints that have to be satisfied
e.g., on inputs, outputs, states, linear, quadratic,...
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1 Concepts 1.3 Mathematical Formulation

MPC: Mathematical Formulation

At each sample time:
Measure / estimate current state x(t)
Find the optimal input sequence for the entire planning window N :
U

ú
t = {u

ú
t , u

ú
t+1, . . . , u

ú
t+N≠1}

Implement only the first control action u

ú
t
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2 Constrained Optimal Control: 2-Norm 2.1 Problem Formulation

Problem Formulation

Quadratic cost function

J0(x(0), U0) = x Õ
N PxN +

N≠1ÿ

k=0
x Õ

kQxk + uÕ
kRuk (2)

with P ≤ 0, Q ≤ 0, R º 0.
Constrained Finite Time Optimal Control problem (CFTOC).

J ú
0 (x(0)) = min

U0
J0(x(0), U0)

subj. to xk+1 = Axk + Buk , k = 0, . . . , N ≠ 1

xk œ X , uk œ U , k = 0, . . . , N ≠ 1

xN œ Xf
x0 = x(0)

(3)

N is the time horizon and X , U , Xf are polyhedral regions.
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2 Constrained Optimal Control: 2-Norm 2.2 Construction of the QP with substitution

Construction of the QP with substitution

Step 1: Rewrite the cost as (see lectures on Day 1 & 2)

J0(x(0), U0) = U Õ
0HU0 + 2x(0)

ÕFU0 + x(0)

ÕYx(0)

= [U Õ
0 x(0)

Õ
]

#
H FÕ

F Y
$

[U0
Õ x(0)

Õ
]

Õ

Note:
#

H FÕ

F Y
$

≤ 0 since J0(x(0), U0) Ø 0 by assumption.
Step 2: Rewrite the constraints compactly as (details provided on the next
slide)

G0U0 Æ w0 + E0x(0)

Step 3: Rewrite the optimal control problem as

J ú
0 (x(0)) = min

U0
[U Õ

0 x(0)

Õ
]

#
H FÕ

F Y
$

[U0
Õ x(0)

Õ
]

Õ

subj. to G0U0 Æ w0 + E0x(0)
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2 Constrained Optimal Control: 2-Norm 2.2 Construction of the QP with substitution

Solution

J ú
0 (x(0)) = min

U0
[U Õ

0 x(0)

Õ
]

#
H FÕ

F Y
$

[U0
Õ x(0)

Õ
]

Õ

subj. to G0U0 Æ w0 + E0x(0)

For a given x(0) U ú
0 can be found via a QP solver.
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3 Summary and Outlook 3.1 Summary

Summary

Obtain a model of the system
Design a state observer
Define optimal control problem
Set up optimization problem in optimization software
Solve optimization problem to get optimal control sequence
Verify that closed-loop system performs as desired,
e.g., check performance criteria, robustness, real-time aspects,...
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2 Examples

Table of Contents
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2 Examples

MPC: Applications

Production planning

Nurse rostering

Buildings

Power systems

Train scheduling

Refineries

Traction control

Computer control ns

!s

ms

Seconds

Minutes

Hours

Days

Weeks
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3 Summary and Outlook 3.1 Summary

Important Aspects of Model Predictive Control
Main advantages:

Systematic approach for handling constraints
High performance controller

Main challenges:
Implementation
MPC problem has to be solved in real-time, i.e. within the sampling interval
of the system, and with available hardware (storage, processor,...).
Stability
Closed-loop stability, i.e. convergence, is not automatically guaranteed
Robustness
The closed-loop system is not necessarily robust against uncertainties or
disturbances
Feasibility
Optimization problem may become infeasible at some future time step, i.e.
there may not exist a plan satisfying all constraints
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Model Predictive Control
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1 Basic Ideas of Predictive Control

Infinite Time Constrained Optimal Control
(what we would like to solve)

J ú
0 (x(0)) = min

Œÿ

k=0
q(x

k

, u
k

)

s.t. x
k+1 = Ax

k

+ Bu
k

, k = 0, . . . , N ≠ 1

x
k

œ X , u
k

œ U , k = 0, . . . , N ≠ 1

x0 = x(0)

Stage cost q(x, u) describes “cost” of being in state x and applying input u

Optimizing over a trajectory provides a tradeo� between short- and
long-term benefits of actions

We’ll see that such a control law has many beneficial properties...
... but we can’t compute it: there are an infinite number of variables
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1 Basic Ideas of Predictive Control

Receding Horizon Control
(what we can sometimes solve)

J ú
t

(x(t)) = min

U

t

p(x
t+N

) +

N≠1ÿ

k=0
q(x

t+k

, u
t+k

)

subj. to x
t+k+1 = Ax

t+k

+ Bu
t+k

, k = 0, . . . , N ≠ 1

x
t+k

œ X , u
t+k

œ U , k = 0, . . . , N ≠ 1

x
t+N

œ X
f

x
t

= x(t)

(1)

where U
t

= {u
t

, . . . , u
t+N≠1}.

Truncate after a finite horizon:
p(x

t+N

) : Approximates the ‘tail’ of the cost
X

f

: Approximates the ‘tail’ of the constraints
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1 Basic Ideas of Predictive Control

On-line Receding Horizon Control

!"#"!"$%"

&'() #*)*!"

&!"+,%)"+-.*)&*)(

/'$,&*0')"+-,$&*)(

&!"+,%)"+-.*)&*)(

/'$,&*0')"+-,$&*)(

1 At each sampling time, solve a CFTOC.
2 Apply the optimal input only during [t, t + 1]

3 At t + 1 solve a CFTOC over a shifted horizon based on new state
measurements

4 The resultant controller is referred to as Receding Horizon Controller
(RHC) or Model Predictive Controller (MPC).
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1 Basic Ideas of Predictive Control

On-line Receding Horizon Control

1) MEASURE the state x(t) at time instance t
2) OBTAIN U ú

t

(x(t)) by solving the optimization problem in (1)
3) IF U ú

t

(x(t)) = ÿ THEN ‘problem infeasible’ STOP
4) APPLY the first element uú

t

of U ú
t

to the system
5) WAIT for the new sampling time t + 1, GOTO 1)

Note that, we need a constrained optimization solver for step 2).
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2 History of MPC

History of MPC

A. I. Propoi, 1963, “Use of linear programming methods for synthesizing
sampled-data automatic systems”, Automation and Remote Control.

J. Richalet et al., 1978 “Model predictive heuristic control- application to
industrial processes”. Automatica, 14:413-428.

known as IDCOM (Identification and Command)
impulse response model for the plant, linear in inputs or internal variables
(only stable plants)
quadratic performance objective over a finite prediction horizon
future plant output behavior specified by a reference trajectory
ad hoc input and output constraints
optimal inputs computed using a heuristic iterative algorithm, interpreted as
the dual of identification
controller was not a transfer function, hence called heuristic

F. Borrelliú , C. Jones† , M. Morari Model Predictive ControlPart III – Feasibility and StabilitySpring Semester 2014 revised 29.04.2014 2-6



2 History of MPC

History of MPC
1970s: Cutler suggested MPC in his PhD proposal at the University of
Houston in 1969 and introduced it later at Shell under the name Dynamic
Matrix Control. C. R. Cutler, B. L. Ramaker, 1979 “Dynamic matrix
control – a computer control algorithm”. AICHE National Meeting, Houston,
TX.

successful in the petro-chemical industry
linear step response model for the plant
quadratic performance objective over a finite prediction horizon
future plant output behavior specified by trying to follow the set-point as
closely as possible
input and output constraints included in the formulation
optimal inputs computed as the solution to a least–squares problem
ad hoc input and output constraints. Additional equation added online to
account for constraints. Hence a dynamic matrix in the least squares problem.

C. Cutler, A. Morshedi, J. Haydel, 1983. “An industrial perspective on
advanced control”. AICHE Annual Meeting, Washington, DC.

Standard QP problem formulated in order to systematically account for
constraints.
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2 History of MPC

History of MPC

Mid 1990s: extensive theoretical e�ort devoted to provide conditions for
guaranteeing feasibility and closed-loop stability
2000s: development of tractable robust MPC approaches; nonlinear and
hybrid MPC; MPC for very fast systems
2010s: stochastic MPC; distributed large-scale MPC; economic MPC
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4 MPC Features

Table of Contents

1. Basic Ideas of Predictive Control

2. History of MPC

3. Receding Horizon Control Notation

4. MPC Features

5. Stability and Invariance of MPC

6. Feasibility and Stability
6.1 Proof for X

f

= 0

6.2 General Terminal Sets
6.3 Example

7. Extension to Nonlinear MPC
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4 MPC Features

MPC Features

Pros
Any model

linear
nonlinear
single/multivariable
time delays
constraints

Any objective:
sum of squared errors
sum of absolute errors (i.e.,
integral)
worst error over time
economic objective

Cons
Computationally demanding in
the general case
May or may not be stable
May or may not be feasible
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4 MPC Features

Example: Cessna Citation Aircraft
Linearized continuous-time model:
(at altitude of 5000m and a speed of 128.2 m/sec)

ẋ =

S

WWU

≠1.2822 0 0.98 0

0 0 1 0

≠5.4293 0 ≠1.8366 0

≠128.2 128.2 0 0

T

XXV x +

S

WWU

≠0.3
0

≠17

0

T

XXV u

y =

5
0 1 0 0

0 0 0 1

6
x

horizon

V

Pitch angle

Angle of attack

Input: elevator angle
States: x1: angle of attack, x2: pitch angle, x3: pitch rate, x4: altitude
Outputs: pitch angle and altitude
Constraints: elevator angle ±0.262rad (±15

¶), elevator rate ±0.524rad
(±60

¶), pitch angle ±0.349 (±39

¶)
Open-loop response is unstable (open-loop poles: 0, 0, ≠1.5594 ± 2.29i)
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4 MPC Features

LQR and Linear MPC with Quadratic Cost

Quadratic cost
Linear system dynamics
Linear constraints on inputs and states

LQR

JŒ(x(t)) = min

Œÿ

k=0
xT

t

Qx
t

+ uT

k

Ru
k

s.t. x
k+1 = Ax

k

+ Bu
k

x0 = x(t)

MPC

J ú
0 (x(t)) = min

U0

N≠1ÿ

k=0
x

k

TQx
k

+ u
k

TRu
k

s.t. x
k+1 = Ax

k

+ Bu
k

x
k

œ X , u
k

œ U
x0 = x(t)

Assume: Q = QT ≤ 0, R = RT º 0
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4 MPC Features

Example: LQR with saturation
Linear quadratic regulator with saturated inputs.

At time t = 0 the plane is flying with a deviation of
10m of the desired altitude, i.e. x0 = [0; 0; 0; 10]

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10

0 2 4 6 8 10
−200

−100

0

100

200

Al
tit

ud
e 

x 4 (m
)

Time (sec)
0 2 4 6 8 10

−2

−1

0

1

2

Pi
tc

h 
an

gl
e 

x 2 (r
ad

)

0 2 4 6 8 10
−0.5

0

0.5

Time (sec)

El
ev

at
or

 a
ng

le
 u

 (r
ad

)

Closed-loop system is
unstable
Applying LQR control
and saturating the
controller can lead to
instability!
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4 MPC Features

Example: MPC with Bound Constraints on Inputs
MPC controller with input constraints |u

i

| Æ 0.262

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10

0 2 4 6 8 10
−40

−20

0

20

40

Al
tit

ud
e 

x 4 (m
)

Time (sec)
0 2 4 6 8 10

−1

−0.5

0

0.5

1

Pi
tc

h 
an

gl
e 

x 2 (r
ad

)

0 2 4 6 8 10
−0.5

0

0.5

Time (sec)

El
ev

at
or

 a
ng

le
 u

 (r
ad

)

The MPC controller uses the
knowledge that the elevator
will saturate, but it does not
consider the rate constraints.

∆ System does not
converge to desired
steady-state but to a
limit cycle
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4 MPC Features

Example: MPC with all Input Constraints
MPC controller with input constraints |u

i

| Æ 0.262

and rate constraints |u̇
i

| Æ 0.349

approximated by |u
k

≠ u
k≠1| Æ 0.349T

s

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10

0 2 4 6 8 10
−10

0

10

20

Al
tit

ud
e 

x 4 (m
)

Time (sec)
0 2 4 6 8 10

−0.4

−0.2

0

0.2

Pi
tc

h 
an

gl
e 

x 2 (r
ad

)

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

Time (sec)

El
ev

at
or

 a
ng

le
 u

 (r
ad

)

The MPC controller
considers all constraints on
the actuator

Closed-loop system is
stable
E�cient use of the
control authority
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4 MPC Features

Example: Inclusion of state constraints
MPC controller with input constraints |u

i

| Æ 0.262

and rate constraints |u̇
i

| Æ 0.349

approximated by |u
k

≠ u
k≠1| Æ 0.349T

s

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10

0 2 4 6 8 10
50

0

50

100

150

Al
tit

ud
e 

x 4 (m
)

Time (sec)
0 2 4 6 8 10

1

0.5

0

0.5

Pi
tc

h 
an

gl
e 

x 2 (r
ad

)

0 2 4 6 8 10
0.5

0

0.5

Time (sec)

El
ev

at
or

 a
ng

le
 u

 (r
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Pitch angle -0.9, i.e. -50  

Increase step:
At time t = 0 the plane is
flying with a deviation of
100m of the desired altitude,
i.e. x0 = [0; 0; 0; 100]

Pitch angle too large
during transient
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4 MPC Features

Example: Inclusion of state constraints
MPC controller with input constraints |u

i

| Æ 0.262

and rate constraints |u̇
i

| Æ 0.349

approximated by |u
k

≠ u
k≠1| Æ 0.349T

s

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10
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Constraint on pitch angle active
Add state constraints for
passenger comfort:

|x2| Æ 0.349
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4 MPC Features

Example: Short horizon
MPC controller with input constraints |u

i

| Æ 0.262

and rate constraints |u̇
i

| Æ 0.349

approximated by |u
k

≠ u
k≠1| Æ 0.349T

s

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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Decrease in the prediction
horizon causes loss of the sta-
bility properties
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5 Stability and Invariance of MPC

Loss of Feasibility and Stability

What can go wrong with “standard” MPC?
No feasibility guarantee, i.e., the MPC problem may not have a solution
No stability guarantee, i.e., trajectories may not converge to the origin
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5 Stability and Invariance of MPC

Summary: Feasibility and Stability

Infinite-Horizon
If we solve the RHC problem for N = Œ (as done for LQR), then the open
loop trajectories are the same as the closed loop trajectories. Hence

If problem is feasible, the closed loop trajectories will be always feasible
If the cost is finite, then states and inputs will converge asymptotically to the
origin

Finite-Horizon
RHC is “short-sighted” strategy approximating infinite horizon controller. But

Feasibility. After some steps the finite horizon optimal control problem may
become infeasible. (Infeasibility occurs without disturbances and model
mismatch!)
Stability. The generated control inputs may not lead to trajectories that
converge to the origin.
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5 Stability and Invariance of MPC

Feasibility and stability in MPC - Solution

Main idea: Introduce terminal cost and constraints to explicitly ensure feasibility
and stability:

J ú
0 (x0) = min

U0
p(x

N

) +

N≠1ÿ

k=0
q(x

k

, u
k

) Terminal Cost

subj. to

x
k+1 = Ax

k

+ Bu
k

, k = 0, . . . , N ≠ 1

x
k

œ X , u
k

œ U , k = 0, . . . , N ≠ 1

x
N

œ X
f

Terminal Constraint
x0 = x(t)

p(·) and X
f

are chosen to mimic an infinite horizon.
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6 Feasibility and Stability 6.2 General Terminal Sets

Choice of Terminal Set and Cost: Summary

Terminal constraint provides a su�cient condition for stability

Region of attraction without terminal constraint may be larger than for MPC
with terminal constraint but characterization of region of attraction extremely
di�cult

X
f

= 0 simplest choice but small region of attaction for small N

Solution for linear systems with quadratic cost

In practice: Enlarge horizon and check stability by sampling

With larger horizon length N , region of attraction approaches maximum
control invariant set
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6 Feasibility and Stability 6.3 Example

Example: Short horizon
MPC controller with input constraints |u

i

| Æ 0.262

and rate constraints |u̇
i

| Æ 0.349

approximated by |u
k

≠ u
k≠1| Æ 0.349T

s

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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Decrease in the prediction
horizon causes loss of the sta-
bility properties
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6 Feasibility and Stability 6.3 Example

Example: Short horizon
MPC controller with input constraints |u

i

| Æ 0.262

and rate constraints |u̇
i

| Æ 0.349

approximated by |u
k

≠ u
k≠1| Æ 0.349T

s

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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Inclusion of terminal cost and
constraint provides stability
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6 Feasibility and Stability 6.3 Example

Summary

Finite-horizon MPC may not be stable!

Finite-horizon MPC may not satisfy constraints for all time!

An infinite-horizon provides stability and invariance.

We ‘fake’ infinite-horizon by forcing the final state to be in an invariant set
for which there exists an invariance-inducing controller, whose infinite-horizon
cost can be expressed in closed-form.

These ideas extend to non-linear systems, but the sets are di�cult to
compute.
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7 Extension to Nonlinear MPC

Extension to Nonlinear MPC

Consider the nonlinear system dynamics: x(t + 1) = g(x(t), u(t))

J ú
0 (x(t)) = min

U0
p(x

N

) +

N≠1ÿ

k=0
q(x

k

, u
k

)

subj. to x
k+1 = g(x

k

, u
k

), k = 0, . . . , N ≠ 1

x
k

œ X , u
k

œ U , k = 0, . . . , N ≠ 1

x
N

œ X
f

x0 = x(t)

Presented assumptions on the terminal set and cost did not rely on linearity
Lyapunov stability is a general framework to analyze stability of nonlinear
dynamic systems

æ Results can be directly extended to nonlinear systems.
However, computing the sets X

f

and function p can be very di�cult!

F. Borrelliú , C. Jones† , M. Morari Model Predictive ControlPart III – Feasibility and StabilitySpring Semester 2014 revised 29.04.2014 7-54



MPC: Tracking, Soft Constraints, Move-Blocking

M. Morari, F. Borrelliú, C. Jones†

Institut für Automatik
ETH Zürich

úUC Berkeley
† EPFL

Spring Semester 2014
revised 29.04.2014

M. Morari, F. Borrelliú , C. Jones† MPC: Tracking, Soft Constraints, Move-Blocking Spring Semester 2014 revised 29.04.2014



Table of Contents

1. Reference Tracking
1.1 The Steady-State Problem
1.2 O�set Free Reference Tracking

2. Soft Constraints
2.1 Motivation
2.2 Mathematical Formulation

3. Generalizing the Problem

M. Morari, F. Borrelliú , C. Jones† MPC: Tracking, Soft Constraints, Move-Blocking Spring Semester 2014 revised 29.04.2014



1 Reference Tracking
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1 Reference Tracking

Tracking problem

Consider the linear system model

x

k+1

= Ax

k

+ Bu

k

y

k

= Cx

k

Goal: Track given reference r such that y

k

æ r as k æ Œ.

Determine the steady state target condition x

s

, u

s

:

x

s

= Ax

s

+ Bu

s

Cx

s

= r

≈∆
5
I ≠ A ≠B

C 0

6 5
x

s

u

s

6
=

5
0

r

6
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1 Reference Tracking 1.1 The Steady-State Problem
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1 Reference Tracking 1.1 The Steady-State Problem

Steady-state target problem
In the presence of constraints: (x

s

, u

s

) has to satisfy state and input
constraints.
In case of multiple feasible u

s

, compute ‘cheapest’ steady-state (x

s

, u

s

)

corresponding to reference r :

min

u

T

s

R

s

u

s

s.t.
5
I ≠ A ≠B

C 0

6 5
x

s

u

s

6
=

5
0

r

6

x

s

œ X , u

s

œ U .

In general, we assume that the target problem is feasible
If no solution exists: compute reachable set point that is ‘closest’ to r :

min

(Cx

s

≠ r)

T

Q

s

(Cx

s

≠ r)

s.t. x

s

= Ax

s

+ Bu

s

x

s

œ X , u

s

œ U .
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1 Reference Tracking 1.1 The Steady-State Problem

RHC Reference Tracking

We now use control (MPC) to bring the system to a desired steady-state
condition (x

s

, u

s

) yielding the desired output y

k

æ r .

The MPC is designed as follows

min

u0,...,u
N≠1

Îy

N

≠ Cx

s

Î2

P

+

N≠1ÿ

k=0

Îy

k

≠ Cx

s

Î2

Q

+ Îu

k

≠ u

s

Î2

R

subj. to model
constraints
x

0

= x(t).

Drawback: controller will show o�set in case of unknown model error or
disturbances.
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2 Soft Constraints 2.1 Motivation
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2 Soft Constraints 2.1 Motivation

Soft Constraints: Motivation

Input constraints are dictated by physical constraints on the actuators and
are usually “hard”
State/output constraints arise from practical restrictions on the allowed
operating range and are rarely hard

Hard state/output constraints always lead to complications in the controller

implementation

Feasible operating regime is constrained even for stable systems

Controller patches must be implemented to generate reasonable control action

when measured/estimated states move outside feasible range because of

disturbances or noise

In industrial implementations, typically, state constraints are softened
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2 Soft Constraints 2.2 Mathematical Formulation
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2 Soft Constraints 2.2 Mathematical Formulation

Mathematical Formulation
Original problem:

min

z

f (z)

subj. to g(z) Æ 0

Assume for now g(z) is scalar valued.
“Softened” problem:

min

z,‘
f (z) + l(‘)

subj. to g(z) Æ ‘
‘ Ø 0

Requirement on l(‘)
If the original problem has a feasible solution z

ú, then the softened problem should
have the same solution z

ú, and ‘ = 0.

Note: l(‘) = v · ‘2 does not meet this requirement for any v > 0 as demonstrated
next.
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2 Soft Constraints 2.2 Mathematical Formulation

Main Result
Theorem (Exact Penalty Function)
l(‘) = u · ‘ satisfies the requirement for any u > u

ú Ø 0, where u

ú is the optimal
Lagrange multiplier for the original problem.

Disadvantage: l(‘) = u · ‘ renders the cost non-smooth.
Therefore in practice, to get a smooth penalty, we use

l(‘) = u · ‘ + v · ‘2

with u > u

ú and v > 0.
Extension to multiple constraints g

j

(z) Æ 0, j = 1, . . . , r :

l(‘) =

rÿ

j=1

u

j

· ‘
j

+ v

j

· ‘2

j

(1)

where u

j

> u

ú
j

and v

j

> 0 can be used to weight violations (if necessary)
di�erently.
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1 Explicit Model Predictive Control 1.1 Introduction

Introduction

Requires at each time step on-line solution of an optimization problem
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1 Explicit Model Predictive Control 1.1 Introduction

Introduction

OFFLINE ONLINE

U

ú
0 (x(t)) = argmin x

T
N PxN +

N≠1ÿ

k=0

x

Õ
kQxk + u

Õ
kRuk

subj. to x0 = x(t)
xk+1 = Axk + Buk , k = 0, . . . , N ≠ 1
xk œ X , uk œ U , k = 0, . . . , N ≠ 1
xN œ Xf

Plant state 

Output 
Plant 

* ( ( ))U x t0 ( )x t

( )y t

* ( )U x0

Optimization problem is parameterized by state
Pre-compute control law as function of state x
Control law is piecewise a�ne for linear system/constraints

Result: Online computation dramatically reduced and real-time

Tool: Parametric programming
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1 Explicit Model Predictive Control 1.5 Online Evaluation: Point Location Problem

Online evaluation: Point location

Calculation of piecewise a�ne function:
1 Point location
2 Evaluation of a�ne function

1 2 
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1 Explicit Model Predictive Control 1.6 MPT Example

Real-time MPC Software Toolbox

Software synthesis 
• Real-time workshop 
• Bounded-time solvers 
• Verifiable code generation 

Formal specification 
• YALMIP 
• HYSDEL 
• Linear + Hybrid models 

Verified controller 
 

Control law 
• Explicit MPC 
• Fixed-complexity solutions 
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1 Modeling of Hybrid Systems 1.1 Introduction

Introduction

Up to this point: Discrete-time linear systems with linear constraints.

We now consider MPC for systems with
1 Continuous dynamics: described by one or more di�erence (or di�erential)

equations; states are continuous-valued.
2 Discrete events: state variables assume discrete values, e.g.

binary digits {0, 1},

N, Z, Q, . . .
finite set of symbols

Hybrid systems: Dynamical systems whose state evolution depends on an
interaction between continuous dynamics and discrete events.
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1 Modeling of Hybrid Systems 1.1 Introduction

Introduction
Introduction

continuous 
dynamics

discrete 
dynamics 
and logic

binary
inputs

binary
outputs

real-valued
outputs

real-valued
inputs

events
mode

switches

Figure: Hybrid systems. Logic-based discrete dynamics and continuous dynamics
interact through events and mode switches

Francesco Borrelli (UC Berkeley) Hybrid Systems April 25, 2011 3 / 59

Hybrid systems: Logic-based discrete dynamics and continuous dynamics
interact through events and mode switches

F. Borrelliú , M. Morari, C. Jones† Hybrid Model Predictive Control Spring Semester 2014 1-4



1 Modeling of Hybrid Systems 1.2 Examples of Hybrid Systems

Mechanical System with Backlash
Hybrid Systems: Examples (I)
Mechanical system with backlash

x1

x2

εδ

∆x

Continuous dynamics : states x1, x2, ẋ1, ẋ2.
Discrete events :

a) “contact mode” ⇒ mechanical parts are in contact and the force is
transmitted. Condition:

[(∆x = δ) ∧ (ẋ1 > ẋ2)]
∨

[(∆x = ε) ∧ (ẋ2 > ẋ1)]
b) “backlash mode” ⇒ mechanical parts are not in contact

Francesco Borrelli (UC Berkeley) Hybrid Systems April 25, 2011 4 / 59

Continuous dynamics: states x1, x2, ẋ1, ẋ2.
Discrete events:

a) “contact mode” ∆ mechanical parts are in contact and the force is

transmitted. Condition:

[(�x = ”) · (ẋ1 > ẋ2)]
fl

[(�x = Á) · (ẋ2 > ẋ1)]

b) “backlash mode” ∆ mechanical parts are not in contact
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1 Modeling of Hybrid Systems 1.2 Examples of Hybrid Systems

DCDC Converter
Hybrid Systems: Examples (II)
DC2DC Converter

rℓ

vℓ
vs

iℓ

vc

ic
rc

i0
r0

v0

S = 0

S = 1

Continuous dynamics : states vℓ, iℓ, vc, ic, v0, i0

Discrete events : S = 0, S = 1

MODE 1 (S = 1 ) MODE 2 (S = 0 )

Francesco Borrelli (UC Berkeley) Hybrid Systems April 25, 2011 5 / 59

Continuous dynamics: states v¸, i¸, v
c

, i
c

, v0, i0
Discrete events: S = 0, S = 1

Mode 1 (S = 1)

Hybrid Systems: Examples (II)
DC2DC Converter

rℓ

vℓ
vs

iℓ

vc

ic
rc

i0
r0

v0

S = 0

S = 1

Continuous dynamics : states vℓ, iℓ, vc, ic, v0, i0

Discrete events : S = 0, S = 1

MODE 1 (S = 1 ) MODE 2 (S = 0 )

Francesco Borrelli (UC Berkeley) Hybrid Systems April 25, 2011 5 / 59

Mode 2 (S = 0)

Hybrid Systems: Examples (II)
DC2DC Converter

rℓ

vℓ
vs

iℓ

vc

ic
rc

i0
r0

v0

S = 0

S = 1

Continuous dynamics : states vℓ, iℓ, vc, ic, v0, i0

Discrete events : S = 0, S = 1

MODE 1 (S = 1 ) MODE 2 (S = 0 )

Francesco Borrelli (UC Berkeley) Hybrid Systems April 25, 2011 5 / 59
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1 Modeling of Hybrid Systems 1.4 Mixed Logical Dynamical (MLD) Hybrid Model

Mixed Logical Dynamical Systems
Goal: Describe hybrid system in form compatible with optimization software:

continuous and boolean variables
linear equalities and inequalities

Idea: associate to each Boolean variable p
i

a binary integer variable ”
i

:

p
i

… {”
i

= 1}, ¬p
i

… {”
i

= 0}

and embed them into a set of constraints as linear integer inequalities.

Two main steps:
1 Translation of Logic Rules into Linear Integer Inequalities
2 Translation continuous and logical components into Linear Mixed-Integer

Relations
Final result: a compact model with linear equalities and inequalities involving real
and binary variables
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1 Modeling of Hybrid Systems 1.4 Mixed Logical Dynamical (MLD) Hybrid Model

MLD Hybrid Model
A DHA can be converted into the following MLD model

x
t+1 = Ax

t

+ B1u
t

+ B2”
t

+ B3z
t

y
t

= Cx
t

+ D1u
t

+ D2”
t

+ D3z
t

E2”
t

+ E3z
t

Æ E4x
t

+ E1u
t

+ E5

where x œ Rn

c ◊ {0, 1}n¸ , u œ Rm

c ◊ {0, 1}m¸ y œ Rp

c ◊ {0, 1}p¸ , ” œ {0, 1}r¸

and z œ Rr

c .

Physical constraints on continuous variables:

C =

;5
x

c

u
c

6
œ Rn

c

+m

c | Fx
c

+ Gu
c

Æ H
<
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1 Modeling of Hybrid Systems 1.4 Mixed Logical Dynamical (MLD) Hybrid Model

HYbrid System DEscription Language

HYSDEL
based on DHA
enables description of discrete-time hybrid systems in a compact way:

automata and propositional logic

continuous dynamics

A/D and D/A conversion

definition of constraints

automatically generates MLD models for MATLAB
freely available from:

http://control.ee.ethz.ch/

˜

hybrid/hysdel/
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2 Optimal Control of Hybrid Systems

Optimal Control for Hybrid Systems: General Formulation
Consider the CFTOC problem:

J ú
(x(t)) = min

U0
p(x

N

) +

N≠1ÿ

k=0
q(x

k

, u
k

, ”
k

, z
k

),

s.t.

Y
______]

______[

x
k+1 = Ax

k

+ B1u
k

+ B2”
k

+ B3z
k

E2”
k

+ E3z
k

Æ E4x
k

+ E1u
k

+ E5

x
N

œ X
f

x0 = x(t)

where x œ Rn

c ◊ {0, 1}n

b , u œ Rm

c ◊ {0, 1}m

b , y œ Rp

c ◊ {0, 1}p

b , ” œ {0, 1}r

b

and z œ Rr

c and
U0 = {u0, u1, . . . , u

N≠1}

Mixed Integer Optimization
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3 Model Predictive Control of Hybrid Systems

Model Predictive Control of Hybrid Systems
MPC solution: Optimization in the loop

As for linear MPC, at each sample time:
Measure / estimate current state x(t)
Find the optimal input sequence for the entire planning window N :
U ú

t

= {uú
t

, uú
t+1, . . . , uú

t+N≠1}
Implement only the first control action uú

t

Key di�erence: Requires online solution of an MILP or MIQP
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