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What is a Cyber-Physical System? 

 An engineered system that integrates physical and cyber 
components where relevant functions are realized 
through the interactions between the physical and cyber 
parts.
 Physical = some tangible, physical device + environment
 Cyber = computational + communicational 



CPS Examples



CPS Examples



The Good News…

 Rich time models
 New type of interactions across 

highly extended spatial/temporal  
dimensions

 Flexible, dynamic  communication 
mechanisms

 Time-variant, nonlinear behavior
 Introspection, learning, reasoning 

 Elaborate coordination of 
physical processes

 Hugely increased system size 
with controllable, stable 
behavior

 Dynamic, adaptive architectures
 Adaptive, autonomic systems
 Self monitoring, self-healing 

system architectures and better 
safety/security guarantees. 

Computing/Communication Integrated CPS

Networking and computing delivers unique precision and flexibility in 
interaction and coordination



…and the Challenges

 Cyber vulnerability
 New type of interactions across 

highly extended spatial/temporal  
dimensions

 Flexible, dynamic  communication 
mechanisms

 Time-variant, nonlinear behavior
 Introspection, learning, reasoning 

 Physical behavior of systems
can be manipulated

 Lack of composition theories for 
heterogeneous systems, many 
unsolved problems

 Vastly increased complexity 
and emergent behaviors

 Lack of theoretical foundations 
for CPS dynamics

 Verification, certification, 
predictability face fundamentally 
new challenges

Computing/Communication Integrated CPS

Fusing networking and computing with physical processes brings new
problems



Abstraction layers allow 
the verification of  
different properties .

Key Idea: Manage design complexity by creating abstraction 
layers in the design flow.

Abstraction layers define 
platforms.

Physical Platform

Software Platform

Computation/Communication Platform

Abstractions are linked 
through mapping.

Claire Tomlin, UC Berkeley

Example for a CPS Approach



Software models 

Real-time system models

implementationcorrectness:

timing analysis (P)

Sifakis at al: “Building Models of Real-Time 
Systems from Application Software,” 
Proceedings of the IEEEVol. 91, No. 1. pp.  
100-111, January 2003 
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• : reactive program. Program execution 
creates a mapping between logical-time
inputs and outputs. 

• :  real-time system. Programs are 
packaged into interacting components. 
Scheduler control access to computational
and communicational resources according
to time constraints P

f

Rf

In CPS, essential system properties
such as stability, safety, 
performance are expressed in
terms of physical behavior

Abstraction layers: SW-RTS



Physical models
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Software models 

Real-time system models

implementationcorrectness:

timing analysis (P)
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Re-defined Goals:
• Compositional verification of
essential dynamic properties

− stability
− safety

• Derive dynamics - offering 
robustness against 
implementation changes and 
uncertainties caused by faults
and cyber attacks

− fault/intrusion induced 
reconfiguration of SW/HW

− network uncertainties
(packet drops, delays)

• Decrease verification 
complexity 

implementation

Abstraction layers: PHY-SW-RTS



Why is CPS Hard? 

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;
import org.apache.tomcat.util.StringManager;

import java.io.*;
import java.net.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

/**
* Core implementation of a server session

*
* @author James Duncan Davidson [duncan@eng.sun.com]

* @author James Todd [gonzo@eng.sun.com]
*/

public class ServerSession {

private StringManager sm =
StringManager.getManager("org.apache.tomcat.session");

private Hashtable values = new Hashtable();
private Hashtable appSessions = new Hashtable();

private String id;
private long creationTime = System.currentTimeMillis();;

private long thisAccessTime = creationTime;
private long lastAccessed = creationTime;

private int inactiveInterval = -1;

ServerSession(String id) {
this.id = id;

}

public String getId() {
return id;

}

public long getCreationTime() {
return creationTime;

}

public long getLastAccessedTime() {
return lastAccessed;

}

public ApplicationSession getApplicationSession(Context context,
boolean create) {

ApplicationSession appSession =
(ApplicationSession)appSessions.get(context);

if (appSession == null && create) {

// XXX
// sync to ensure valid?

appSession = new ApplicationSession(id, this, context);
appSessions.put(context, appSession);

}

// XXX
// make sure that we haven't gone over the end of our
// inactive interval -- if so, invalidate and create

// a new appSession

return appSession;
}

void removeApplicationSession(Context context) {
appSessions.remove(context);

}

/**
* Called by context when request comes in so that accesses and

* inactivities can be dealt with accordingly.
*/

void accessed() {
// set last accessed to thisAccessTime as it will be left over

// from the previous access

lastAccessed = thisAccessTime;
thisAccessTime = System.currentTimeMillis();

}

void validate()

Software Control Systems

Crosses Interdisciplinary Boundaries

• Disciplinary boundaries need to be realigned
• New fundamentals need to be created
• New technologies and tools need to be developed
• Education and training need to be restructured



Physical Interaction

Computational Interaction
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CPS and Model-based Design
Design of CPS layers via MDE

 Software models

 Platform models

 Physical models

Challenge: How to integrate the models so that cross-domain 
interactions can be understood and managed? 



Model Integration for CPS
 Issues
 Cyber models are insufficient, physical models are insufficient
 Many modeling paradigms for physical systems (consider 

engineering or physics!)
 Many interaction pathways: P2P, P2C, C2C, P2C2P, C2P2P2C

 Universal modeling language with precisely defined 
semantics?
 All models are abstractions of reality from a specific point of 

view for a specific purposes. Universality is not pragmatic.  
 Universal modeling language with no/sparse semantics? 
 [SysML] Enabler but not a complete solution – needs content 

semantics



Model Integration for CPS
 Objective: To support the model-

based design of CPS
 Represent the design: both physical 

and cyber, and the interfaces
 Allow analysis of the design

 Simulation-based evaluation and V&V
 Discovering unintended interactions
 Formal verification 

 Drive the implementation of the 
design
 Compile to code, drive the fab 

Key: understanding cross-domain 
interfaces and interactions

‘Cyber’
Computation

Communication

Physical 

Sensor/s Actuator/s

Information

Physical 
quantity

Power

Physical Environment

Physical 
quantity



Tools for CPS Design
 A Cyber-Physical Systems Design Project: AVM
 Goals
 Basic concepts: Vehicle Forge
 Basic concepts: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Flow Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics



A major DARPA program (a decade after MoBIES):
End-to-end model- and component-based design and 
integrated manufacturing of a new generation of vehicles; 
i.e. complex, real-life cyber-physical systems. From 
infrastructure to manufactured vehicle prototype in five 
years (2010-2014).

Engineering/economic goals:
• Decrease development time by 80% in defense systems 
(brings productivity consistent with other industries)

• Enable the adoption of fabless design and foundry 
concept in CPS

• “Democratize” design by open source tool chain, crowed-
sourced model library and prize-based design challenges 

DARPA 
Adaptive Vehicle Make (AVM) Program



AVM Scientific Challenge
 Achieve AVM goals by pushing the limits of 

“correct-by-construction” design using
− Model-based Technologies
 Computational models that predict properties of cyber-

physical systems “as designed” and “as built”. 
 Challenge: Develop domain-specific abstraction layers 

for complex CPS that are evolvable, heterogeneous, yet 
semantically sound and supported by tools. 

− Component-based Technologies 
 Reusable units of knowledge (models) and 

manufactured components.
 Challenge: Go beyond interoperability – find 

opportunities for composition where system-level 
properties can be computed from the properties of 
components



VU
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Tools for CPS Design
 A Cyber-Physical Systems Design Project: AVM
 Goals
 Collaborative environment: Vehicle Forge
 Engineering environment: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Flow Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics



Interface to OpenMETA: VehicleForge
Designers

• Public profile to show recent activities 
and involvement in design projects

• Designer portfolio publishing résumé 
and for self-promotion

• Find designers based on expertise and 
résumé

• Private profile for customizing account 
and notification settings

• User dashboard showing feeds of 
activities from projects, public/private 
messages from other users, 
announcements from forge-message 
channels 

• Component  discovery interface  based on 
taxonomical- and faceted search

• Component view/visualization

Components Design Projects

• Self-provisioned collaboration tools 
• Wiki, 
• Discussion Forum,
• Issue tracking for  managing 
team work.

• Git/SVN repositories for design 
artifacts

• Project and tool-based permission 
control

• Notification and Messaging system 
(in e-mail or  as Dashboard messages)

• Set of available tools is extensible



VehicleForge Gateway



Browser-based 
 Coordination and Monitoring Tools
 Design-space Evaluation and Visualizers
 Team-collaboration Tools
 Component Discovery and Subscription
 Service and Resource Allocation

Design &
Manufacturing 
Components

Analysis & 
Simulation Service 

Providers

Component 
Vendors

Manufacturers 
& 

Foundries

In-cloud Compute & Test bench Services

Ex
ch

an
ge Ontologies

Licensing

Ordering Teams’ Design 
Storage

CyPhy Desktop Tool
Environment

Integrated
VF Service
Gateway

•MongoDB
•Git, SVN, Swift
•Apache SOLR
•TurboGears (Web 
Framework)

•REST Service APIs

 Sharing and Collaboration
 Cloud-based Analysis
 Access to Remote Resources

http://vehicleforge.org/

Service Integration Platform

http://vehicleforge.org/


Tools for CPS Design
 A Cyber-Physical Systems Design Project: AVM
 Goals
 Basic concepts: Vehicle Forge
 Basic concepts: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics



Components span:
• Multiple physics 
domains

• Multiple 
engineering 
domains

• Multiple tools

AVM Components

Component-based:
 Physical
 Cyber
 Cyber-Physical

Battery

VMS
ISG

Servos
/Linkages

Engine
Transmission

Model-based
Model-Integrated Design 
and
Manufacturing Process



Parameter/Property
Interfaces
• characterize
• configure

Caterpillar C9 Diesel Engine : AVM Component

High-Fidelity Modelica Dynamics Model

Rotational 
Power Port Signal Port

Low-Fidelity Modelica Dynamics Model

Rotational 
Power Port Signal Port

Bond Graph Dynamics Model

Rotational 
Power Port Signal Port

Detailed Geometry Model (CAD)

Structural 
Interface

Structural 
Interface

FEA-Ready CAD Model

Structural 
Interface

Structural 
Interface

Throttle
Signal 
Port

map

Power Out
Rotational 
Power Port

map

Mount
Structural 
Interface

map

Be ll Housing
Structural 
Interface

map

Weight
680 kg

Length
1245 mm

Number of Cylinders
6

Maximum Power
330 kW

Height
1070 mm

Width
894.08 mm

Maximum RPM
2300 rpm

Minimum RPM
600 rpm

FEA Geometry

Signal Interfaces
• causal/directional
• logical connect.
• no power transfer

Power Interfaces
• acausal
• physical phen.
(torque/angle..)

• power flow

Structural 
Interfaces
• named datums
• surface/axis/point
• mapped to CAD

Dynamics

Detailed Geometry

AVM Component Model



Components Designs Design Spaces

Self-contained building 
block 

Instantiate and connect
components

Sets of parameterized 
architectures

Properties and 
Parameters

Parameters, behaviors, 
geometry are composed

Extended around seed 
designs

Wrapper for detailed 
domain models

Can be wrapped as a 
component

Shaped by design and 
manufacturability 
constraints

Aggregates the domain 
interfaces into a single set 
of component 
interfaces

Aggregates the component 
interfaces into a single set 
of system interfaces.

Accumulates, evolves 
design and 
manufacturing 
knowledge

C1(p)

C2(q)

Pars

Stru.

Signal

Power
C

C1(p)

C2(q)
C1,2(p,q) D1,2(p,q)

Components, Designs, Design Spaces



Modeling

Architecture Design Integrated Multi-physics/Cyber Design Detailed Design

Exploration Modeling V&VSimulation Modeling Analysis

Rapid exploration Exploration with integrated optimization and V&V
Deep
analysis

Physics-based 

Structure/CAD/Mfg 

SW 

• Design Space + 
Constraint 
Modeling

• Architecture 
Modeling

• Static Component 
Modeling 
(multi-physics)

• Design Space + Behavioral 
Constraint Modeling

• Architecture Modeling
• Dynamics Modeling 

(multiple abstractions and
multi-physics)

• CAD/assembly modeling
• Coarse Manufacturing 

Constraint Modeling

• Architecture 
Modeling

• Detailed Domain 
Modeling 
− CAD
− FEA; thermal, fluid…
− Surrogate gen.

• Detailed Manuf. 
Modeling

• RT SW modeling

Design Flow



• Using each component’s mappings 
to detailed domain models, system-
level analyses are automatically 
composed to verify:
• Static properties
• Multi-physics dynamics
• Geometry
• FEA properties

• META Test Benches provide an 
analysis context, including stimulus, 
loading, and monitoring.

• Test Benches include algorithms to 
produce Metrics, which are used to 
evaluate the design against 
Requirements.

• META Design Models are mapped 
to these Test Benches.

• Design Spaces can also be mapped 
to Test Benches, enabling rapid 
evaluation of a family of point 
designs.

Design #2
METADesign

PowerPlant
Compound

Caterpillar C9 Diesel Engine
AVMComponentInstance

Rotational Power Output
PowerPort (virtual)

TransmissionAndPrimaryDriveshaft
Compound

ABC Corp BR204 Primary Driveshaft
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Rotational Power Output
PowerPort (virtual)

Caterpillar CX31 Transmission
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Weight
ComponentPropertyInstance Weight

ComponentPropertyInstance

Weight
Property

Weight
ComponentPropertyInstance

C1
Calculation
(summing operation)

ValueComposition

ValueComposition

PortComposition

PortComposition

Length
ComponentParameterInstance

TestBenchMapping

Hill Climb TestBench
TestBenchInstance

Driveshaft Length
MappableValueInstance
Output

Transmission and Driveshaft Weight
MappableValueInstance
Input

Rotational Power Output
PowerPort (virtual)

Transmission Output
PowerPort (virtual)

ValueCompositionValueComposition

PortComposition

Design

Design and Test Bench Mapping

Requirements and Test Benches



Tools for CPS Design

 A Cyber-Physical Systems Design Project: AVM
 Goals
 Basic concepts: Vehicle Forge
 Basic concepts: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Flow Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics



Modeling

Architecture Design Integrated Multi-physics/Cyber Design Detailed Design

Exploration Modeling V&VSimulation Modeling Analysis

Rapid exploration Exploration with integrated optimization and V&V
Deep
analysis

Physics-based 

Structure/CAD/Mfg 

SW 

Domain Specific Modeling Languages

• Design Space + 
Constraint 
Modeling

• Architecture 
Modeling

• Static Component 
Modeling 
(multi-physics)

• Design Space + Behavioral 
Constraint Modeling

• Architecture Modeling
• Dynamics Modeling 

(multiple abstractions and
multi-physics)

• CAD/assembly modeling
• Coarse Manufacturing 

Constraint Modeling

• Architecture 
Modeling

• Detailed Domain 
Modeling 
− CAD
− FEA; thermal, fluid…
− Surrogate gen.

• Detailed Manuf. 
Modeling

• RT SW modeling

Design Flow Spans 
Heterogeneous Modeling Domains
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Key META Challenge: 
Modeling cross-domain interactions 

Modeling Domains



Competition 
Coordination

Model Library;
Curation

Vehicle
Forge Foundry

Competitors

OpenMETA
Tools

Curated
Components

Produces
Design Data
MFG 
Feedback

Components,
Designs, 
Design Spaces

Uses
ToolsCollaborates

Using VF

Analysis

Component Model
Design, Design Space,
Test Bench Models
Component, Design, 
Design Space Models
Test Bench Models
Use cases/Scenarios
META/MFG Interface

Information Flows Across  
Program Components



Information Architecture Challenges 
 Shared conceptualization
 Semantically sound modeling languages
 Integration of many tools and their modeling

languages



Information Architecture Challenges 
How should we choose vocabularies, ontologies? 
 Could not find standards covering even smaller part of the AVM domain…
 Grow and evolve vocabularies/ontologies during model library 

development
 Adopt vocabularies as defined by integrated tools (such as Modelica) 
How should we choose modeling language(s)? 
 Define yet another modeling language?
 Choose one that already exists and broad enough to cover the design 

domain?
 Create a new standard or update an old one?
Unintended consequences
 What are the implications on tools?
 How about “my freedom of abstractions”?
 What is the language evolution trajectory?



The Foundry
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Complexity Evaluation

Adaptability Evaluation

Design Model of a cyber-
physical system.  Uses 
abstraction and hierarchy.

Models of the design space.  
Uses:
- Abstraction
- Containment
- Alternatives/options
- Parametric components

Functional decomposition 
hierarchy,  derived from 
requirements 

Concrete,  domain- specific 
models of components and 
subsystems linked to the 
Architecture Design Model.

Technology 
Constraints

M
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TA

Refinement

C
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Architecture Design Model

Design Space Exploration

Verification/Validation

First idea…



Impact: Open Language Engineering Environment  Adaptability of Process/Design 
Flow  Accommodate New Tools/Frameworks, Accommodate New Languages

SL/SF
MetaModel

CAD Integration
MetaModel

CAD
Meta

Model Integration Language - CyPhy

ab
st

ra
ct

io
n

Hierarchical Ported Models /Interconnects 
Structured Design Spaces
Model Composition Operators

Semantic 
Interface

Structural 
Semantics

Semantic
Translators

CyPhy
SL/SF

CyPhy
 SEER

CyPhy
 CAD

Transformation
Semantics

Semantic
Backplane

Behavioral
Semantics

Domain Specific Tools and Frameworks

Pro-E Dymola

The Case for Model Integration Languages…



doTransition (fsm as FSM, s as State, t 
as Transition) =

require s.active 
step exitState (s)
step if t.outputEvent <> null then 

emitEvent (fsm, t.outputEvent)
step activateState (fsm, t.dst)

Mathematical and 
physical foundations

Domain-Specific        
Environments

Domain Specific 
Design Automation 
Environments:

• Automotive
• Avionics
• Sensors…

Tools:
• Modeling
• Analysis  
• Verification
• Synthesis

Key Idea: Use models in domain-specific  design flows and ensure 
that the final design models are rich enough to enable production of
artifacts with sufficiently predictable properties.
Impact: significant productivity increase in design technology

Design 
Requirements

Production 
Facilities

Challenges:
• Cost of  tools
• Benefit only 

narrow domains 
• Islands of  

Automation

Model-Based Design



doTransition (fsm as FSM, s as State, t 
as Transition) =

require s.active 
step exitState (s)
step if t.outputEvent <> null then 

emitEvent (fsm, t.outputEvent)
step activateState (fsm, t.dst)

Semantic Foundation
Component Libraries

Domain-Specific        
Environments

Metaprogrammable 
Tools, Environments   

Metaprogrammable
Tool Infrastructure

• Model Building
• Model Transf.
• Model Mgmt.
• Tool Integration

Explicit Semantic 
Foundation

• Structural
• Behavioral

Key Idea: Ensure reuse of high-value tools in domain-specific 
design flows by introducing a metaprogrammable tool infrastructure.
VU/ISIS implementation: Model Integrated Computing (MIC) tool 
suite (http://repo.isis.vanderbilt.edu/downloads/)

Layer

Design 
Requirements

Production 
Facilities

Domain Specific 
Design Automation 
Environments:

• Automotive
• Avionics
• Sensors…

Meta

Metaprogrammable Design Tools
“Freedom of Abstractions”

http://repo.isis.vanderbilt.edu/downloads/


Component
Model

Design
Model

Design Space 
Model

Requirement
Model

Result
Package

CyPhy
Model Integration Language

Test Bench
Integration Language

Embedded System 
Modeling 

Language (ESMOL)
CADModelica

Bond 
Graph

FEA

Probab. 
Analysis 

(PCC)

Parametric 
Exploration 
Tool (PET)

Design Data Package (DDP)

Signal Flow
Modeling
Language

Software  
Architecture

Modeling
Language

Deployment
Modeling 
Language

Software 
Component

Modeling
Language

DESERT

Qualitative 
Abstraction

META Ontologies

Interface & 
Composition 
Vocabulary

Behavior 
Vocabulary

Testing 
Vocabulary

VehicleForge 
Ontology iFAB Ontology

Vehicle Component
Vocabularies

<<Note>>
Notional/incomplete. 

Currently includes 
characterizations of 

supplier data

Relational 
Abstraction

Fault 
Modeling

Models and 
Modeling 
Languages

Standardized 
Vocabularies 
and 
Core Types

OpenMETA 
Information Architecture



Summary of OpenMETA – Approach to 
Information Architecture
 Model-Integration Language: CyPhyML
 Use of Metaprogrammable tools (MIC Tool Suite of ISIS/Vanderbilt)
 Use of Semantic Integration (see later)



Tools for CPS Design
 A Cyber-Physical Systems Design Project: AVM
 Goals
 Basic concepts: Vehicle Forge
 Basic concepts: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Flow Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics



Modeling

Architecture Design Integrated Multi-physics/Cyber Design Detailed Design

Exploration Modeling V&VSimulation Modeling Analysis

Rapid exploration Exploration with integrated optimization and V&V
Deep
analysis

Physics-based 

Structure/CAD/Mfg 

SW 

• Design Space + 
Constraint 
Modeling

• Architecture 
Modeling

• Static Component 
Modeling 
(multi-physics)

• Design Space + Behavioral 
Constraint Modeling

• Architecture Modeling
• Dynamics Modeling 

(multiple abstractions and
multi-physics)

• CAD/assembly modeling
• Coarse Manufacturing 

Constraint Modeling

• Architecture 
Modeling

• Detailed Domain 
Modeling 
− CAD
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• Detailed Manuf. 
Modeling

• RT SW modeling

Design Flow



Design Flow Integration Challenges
 How to start the design process?
 How to help its convergence to a “good enough” 

solution?
 How to link all the tools?



META Design Flow



OpenMETA “Composers”
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Example for Test Benches to Evaluate 
FANG Requirements

Components



Components
Subsystem
Design Spaces

Design Space 
Evolution
Requirements, 
Design Rules 
Constraints

Design 
Architectures

Constraint-guided Design Space 
Pruning

Architecture Exploration  
Using Interface Abstractions



Multiple Physics DomainsMultiple Fidelity Behavior Models

Design 
Architectures

Simulation Test Bench for Behavioral Properties

KPP

KPP

Uncertainty 
Propagation & 
Estimation

PCC

Design Space Exploration Using 
Multi-Fidelity ODEs
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Design 
Architectures

FEA Testbench for Structural Properties

KPP

CAD Testbench for Physical Properties

KPP

1) maximum shear stress, 
2) maximum bearing stress, 
3) maximum Von Mises stress
4) factor-of-safety

1) Bounding 
box

2) Center of 
Gravity

3) Dimensions

Design Space Exploration Using 
Geometry and FEA



• Time-triggered  Model of Computation
• TT bus (or emulated TT bus)

Design Architectures
with deployed  
component dynamics

Hybrid Dynamics 
Models

SW Component
Architecture

Synthesis

SW Component 
Architecture

Timing Model

Component  Code
Generation

Component  Code
WCET Anal.

System Platform
Model

System 
Architecture

Synthesis

Scheduling and
Schedulability

Analysis

Implemented 
Dynamics

Model Synthesis

Certificates

System 
Integration

Code Synthesis

structure + composed beh.

Design Architectures
with ideal component 
dynamics

• Event-triggered Model of Computation
• CAN bus

OpenMETA Software Tool Chain



Design Space Evaluation Visualization



Pairwise Visualization of Metrics



Probabilistic Certificates
of Correctness (PCC)



META Model of 
Structural Connections

CAD-Independent 
Assembly

CAD Tool 
Specific Drivers

iFAB Interface
(partial)

BOM,
Assembly, 
GD&T, …

Geometric Reasoning:
CAD Assembly Composition



Tools for CPS Design

 A Cyber-Physical Systems Design Project: AVM
 Goals
 Basic concepts: Vehicle Forge
 Basic concepts: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Flow Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics



META Semantic Integration

Formal Verification
• Qualitative reasoning
• Relational abstraction
• Model checking
• Bounded model checking

Distributed Simulation
• NS3
• OMNET
• Delta-3D
• CPN

Equations
Modelica-XML

FMU-ME
S-function
FMU-CS

High Level
Architecture
Interface (HLA)

Composition
• Continuous Time
• Discrete Time
• Discrete Event

• Energy flows
• Signal flows
• Geometric

Hybrid 
Bond 
Graph

Modelica
Functional 
Mock-up

Unit

Embedded 
Software 
Modeling

TrueTimeSimulink/
Stateflow

Stochastic Co-Simulation
• Open Modelica
• Dymola

The Need for Formal Semantics



Concept of “Semantic Integration”



• Tight integration from architecture modeling to 
physics-based modeling

• Integrated multi-physics modeling 
• Bridging gap between computation and physics domains
• Tight integration of structural and behavioral models
• Emphasis is on automation and scaling
• META tool suite designed for rapid evolution and extensibility

• Agility is achieved by introducing a 
Semantic  Backplane

• Semantic Backplane is implemented via
– tools and methods for modeling 

language specification, validation, 
and transformations 

– tools and methods for explicit 
representation of and computation 
with well-defined structural and 
behavioral semantics 

– metamodel and transformation 
libraries

– metaprogrammable tools 

Cost of Model Integration 
Languages: “Semantic Backplane”



 History: Foundations for 
Embedded Systems NSF ITR;
Ethan Jackson at VU 2005-
2008

 Microsoft Research 
(Bellevue  & Aachen); 
Satisfiability Modulo Theory 
Solver (Z3); VS distribution

http://research.microsoft.com/formula

 Foundation: Algebraic Data 
Types (ADT) and First-order 
logic with fixpoints (FPL)

 Parameterized with 
background theories (bit 
vectors, term algebras, etc.

 Semantics is defined by 
constraint logic 
programming (CLP)

 Evolving structures; 
temporal logic

Convergence to a Formal Framework: 
FORMULA

http://research.microsoft.com/formula


Formalization of Semantics - Structural
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Behavioral Semantics defines exhibited behavior of 
models by
1. Specifying a translation to a domain with well-

understood operational semantics
2. Specifying a translation to a mathematical domain 

defining behaviors denotationally (e.g. symbolic DAEs)

Use of Behavioral Semantics Specifications:
• Validating/understanding behaviors via simulation
• Generating behaviors using “reference semantics” and 

testing tools w.r.t. reference semantics
• Invariance checking
• Formalization  first steps toward proofs
• Tracking dependences in tool suites

Formalization of Semantics –
Behavioral



Layers of the Semantic Backplane



Structure of the Semantic Backplane



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

domain AcausalBG_elements
{

primitive Sf ::= (id: String).
primitive Se ::= (id: String).
primitive R  ::= (id: String).
primitive C  ::= (id: String).
primitive I  ::= (id: String).
primitive TF ::= (id: String).
primitive GY ::= (id: String).
primitive ZeroJunction ::= (id: String).
primitive OneJunction ::= (id: String).
Source   ::= Sf + Se.
Storage  ::= C + I.
OnePort ::= Source + R + Storage.
TwoPort ::= TF + GY.
BGElement ::= OnePort + TwoPort.
Junction ::= ZeroJunction + OneJunction.
BGNode ::= BGElement + Junction.
primitive Bond ::= (id: String).
[Closed] primitive Src ::= (Bond,BGNode).
[Closed] primitive Dst ::= (Bond,BGNode).

}

Metamodel of a simplified acausal
Bond Graph DSML  

Formal metamodel of a simplified Bond
Graph DSML  

Metamodel and Formal Metamodel - ADTs



• Structural semantics is composed
of constraints on model structure

• Modeling tools need to check
constraints during modeling

• A well-formed model can be mapped
into some behavior

Part of Structural Semantics for acausal 
Bond Graphs 
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1
2
3
4
5
6
7
8
9
10
11
12
22

domain AcausalBG_elements
{
primitive Sf ::= (id: String).
primitive Se ::= (id: String).
primitive R  ::= (id: String).
//…

primitive TF ::= (id: String).
primitive GY ::= (id: String).
primitive ZeroJunction ::= (id: String).
primitive OneJunction ::= (id: String).
Source   ::= Sf + Se. 
//..

}

1
2
3
4
5
6
7
8
11
10
11
12
13
17

domain DAEquations
{
primitive Variable ::=
(name: String, id: String).

primitive Param ::= (id: String).
primitive Neg ::= (Term).
primitive Inv ::= (Term).
//..
Term ::= Variable + Param + Neg + Inv + Mul + Sum.
primitive Eq ::= (Variable, Term).
primitive DiffEq ::= (Variable, Term).
primitive SumZero ::= (Sum).
Equation ::= Eq + DiffEq + SumZero.

}

1
2
3
4
5
6
7
8
9

10
33

transform BG_DenotationalSemantics
from in1::AcausalBG
to out1::DAEquations

{
Eq(ea,px) :- x is Se, Src(a,x).
Eq(fa,px) :- x is Sf, Src(a,x).
Eq(ea, Mul(px,fa)) :- x is R, Dst(a,x).
DiffEq(ea, Mul(Inv(px),fa)) :-
x is C, Dst(a,x).

//…
}

Specifying Behavioral Semantics



1
2
3
4
5
6
7
8
9
10

domain DFA {
primitive Event ::= (lbl: Integer).  
primitive State ::= (lbl: Integer).  
primitive Transition ::= (src: State, trg: Event, dst: State).  
primitive Current ::= (st: State).
nonDeterTrans := Transition(s, e, sp), Transition(s, e, tp), sp != tp.  

conforms := !nonDeterTrans.
}

1
2
3
4
5
6
7
8
9

10
11
12
13

transform Step<fire: in1.Event> from in1::DFA to out1::DFA
{
out1.State(x) :- in1.State(x).
out1.Event(x) :- in1.Event(x).
out1.Transition(s, e, sp) :- in1.Transition(s, e, sp).
out1.Current(sp) :- in1.Current(s), in1.Transition(s, fire, sp).
out1.Current(s) :- in1.Current(s),
fail in1.Transition(s, fire, _). 

}

Operational Behavioral 
Semantics for Finite Automata



CyPhy Languages Structural Specification Behavioral Specification

CyPhy Design/Component 
Model

Composition rules, Signal Flow 
Directionality, Port Type Coercions

High-Level Equation with Timing (Denotational, DAE)

Component Interchange Connectivity rules, multiplicities HLE via CyPhy (Denotational)

Design Interchange Connectivity rules, multiplicities HLE via CyPhy (Denotational)

CyPhy Design Space Consistency of the variation points Logical Expressions

CyPhy Signal Flow -
Structure

Block Interface Specification, Input/Output
Constraints, Connectivity

High-Level Equation with Timing (Denotational) 

CyPhy Signal Flow - State Initial states, MAAB requirements Structural Operational Semantics (Operational)
High-Level Lambda Expressions (Denotational)

Cyber Deployment Required mapping, Unique elements, 
naming conventions

N/A

Cyber Execution Schedulability Constraints, Execution 
Assignments, Logical Execution Time (LET) 
Semantics

Timed Automata (Operational)

Bond Graph Connection constraints, Stroke Directions, High-Level Equation with Timing (Denotational, DAE)

Semantic Backplane



Summary
Lessons Learned building CPS Tools
 Understanding the current limits of correct-by-

construction design using model-based verification
 Significant scalability problems exist even in relatively 

simple (but real) systems
 Scalable verification requires strong restrictions on  

modeling abstractions (e.g. linear hybrid dynamics, order 
reduction)  and has to tolerate low data fidelity

 The resulting uncertainty is epistemic (systematic, 
unknown in practice) and cannot be characterized 
probabilistically



Links
 CPS Virtual Organization: https://cps-vo.org
 AVM Program: http://cps-vo.org/group/avm
 Vehicle Forge: https://vehicleforge.vf.isis.vanderbilt.edu/auth/
 AVM Publications: http://www.isis.vanderbilt.edu/biblio/keyword/183
 AVM Tools: https://vehicleforge.vf.isis.vanderbilt.edu/p/metaresources/home/
 Formula: http://research.microsoft.com/formula

https://cps-vo.org/
http://cps-vo.org/group/avm
https://vehicleforge.vf.isis.vanderbilt.edu/auth/
http://www.isis.vanderbilt.edu/biblio/keyword/183
https://vehicleforge.vf.isis.vanderbilt.edu/p/metaresources/home/
http://research.microsoft.com/formula
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