
Modeling Cyber-Physical Systems:
Challenges and Recent Advances

Gabor Karsai
Institute for Software-Integrated Systems

Vanderbilt University

Seminar at U Conn - 3/3/2015

Acknowledgements
 Personnel

 Janos Sztipanovits
 Ted Bapty
 Sandeep Neema
 Larry Howard
 Abhishek Dubey
 Xenofon Koutsoukos
 Zsolt Lattmann
 Tihamer Levendovszky
 Adam Nagel
 Joseph Porter
 Gabor Simko
 …. and many others at the Institute for Software-Integrated Systems @ Vanderbilt University

 Sponsors
 DARPA AVM, System F6
 NSF CPS Program
 AFRL, AFOSR, ARO
 NASA
 Boeing, BAE Systems, General Motors, Google Lockheed-Martin, Microsoft Research, Siemens, UTRC
 … and many others (see http://www.isis.vanderbilt.edu/sponsors)

http://www.isis.vanderbilt.edu/sponsors

Modeling CPS
 Definition
 Examples
 The three aspects of modeling
 Modeling the physical system
 Models of computation and communication
 Modeling the platform

 Model integration
 Recent results
 Research challenges
 Conclusions

What is a Cyber-Physical System?

 An engineered system that integrates physical and cyber
components where relevant functions are realized
through the interactions between the physical and cyber
parts.
 Physical = some tangible, physical device + environment
 Cyber = computational + communicational

CPS Examples

CPS Examples

The Good News…

 Rich time models
 New type of interactions across

highly extended spatial/temporal
dimensions

 Flexible, dynamic communication
mechanisms

 Time-variant, nonlinear behavior
 Introspection, learning, reasoning

 Elaborate coordination of
physical processes

 Hugely increased system size
with controllable, stable
behavior

 Dynamic, adaptive architectures
 Adaptive, autonomic systems
 Self monitoring, self-healing

system architectures and better
safety/security guarantees.

Computing/Communication Integrated CPS

Networking and computing delivers unique precision and flexibility in
interaction and coordination

…and the Challenges

 Cyber vulnerability
 New type of interactions across

highly extended spatial/temporal
dimensions

 Flexible, dynamic communication
mechanisms

 Time-variant, nonlinear behavior
 Introspection, learning, reasoning

 Physical behavior of systems
can be manipulated

 Lack of composition theories for
heterogeneous systems, many
unsolved problems

 Vastly increased complexity
and emergent behaviors

 Lack of theoretical foundations
for CPS dynamics

 Verification, certification,
predictability face fundamentally
new challenges

Computing/Communication Integrated CPS

Fusing networking and computing with physical processes brings new
problems

Abstraction layers allow
the verification of
different properties .

Key Idea: Manage design complexity by creating abstraction
layers in the design flow.

Abstraction layers define
platforms.

Physical Platform

Software Platform

Computation/Communication Platform

Abstractions are linked
through mapping.

Claire Tomlin, UC Berkeley

Example for a CPS Approach

Software models

Real-time system models

implementationcorrectness:

timing analysis (P)

Sifakis at al: “Building Models of Real-Time
Systems from Application Software,”
Proceedings of the IEEEVol. 91, No. 1. pp.
100-111, January 2003

))(())((, out ρρρ inR ffE Ψ⊆Ψ∈∀

[] []OutTInTf →→→ 2 :

[] []OutT
RR

RInTf →→→ 2 :

PfE R ∈∈∀∈∀),(),(, πρρπρ

• : reactive program. Program execution
creates a mapping between logical-time
inputs and outputs.

• : real-time system. Programs are
packaged into interacting components.
Scheduler control access to computational
and communicational resources according
to time constraints P

f

Rf

In CPS, essential system properties
such as stability, safety,
performance are expressed in
terms of physical behavior

Abstraction layers: SW-RTS

Physical models
[] []OutT

RR
RInTp →→→ 2 : [] []OutT

RR
RInTf →→→ 2 :;

Software models

Real-time system models

implementationcorrectness:

timing analysis (P)

))(())((, out ρρρ inR ffE Ψ⊆Ψ∈∀

[] []OutTInTf →→→ 2 :

[] []OutT
RR

RInTf →→→ 2 :

PfE R ∈∈∀∈∀),(),(, πρρπρ

Re-defined Goals:
• Compositional verification of
essential dynamic properties

− stability
− safety

• Derive dynamics - offering
robustness against
implementation changes and
uncertainties caused by faults
and cyber attacks

− fault/intrusion induced
reconfiguration of SW/HW

− network uncertainties
(packet drops, delays)

• Decrease verification
complexity

implementation

Abstraction layers: PHY-SW-RTS

Why is CPS Hard?

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;
import org.apache.tomcat.util.StringManager;

import java.io.*;
import java.net.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

/**
* Core implementation of a server session

*
* @author James Duncan Davidson [duncan@eng.sun.com]

* @author James Todd [gonzo@eng.sun.com]
*/

public class ServerSession {

private StringManager sm =
StringManager.getManager("org.apache.tomcat.session");

private Hashtable values = new Hashtable();
private Hashtable appSessions = new Hashtable();

private String id;
private long creationTime = System.currentTimeMillis();;

private long thisAccessTime = creationTime;
private long lastAccessed = creationTime;

private int inactiveInterval = -1;

ServerSession(String id) {
this.id = id;

}

public String getId() {
return id;

}

public long getCreationTime() {
return creationTime;

}

public long getLastAccessedTime() {
return lastAccessed;

}

public ApplicationSession getApplicationSession(Context context,
boolean create) {

ApplicationSession appSession =
(ApplicationSession)appSessions.get(context);

if (appSession == null && create) {

// XXX
// sync to ensure valid?

appSession = new ApplicationSession(id, this, context);
appSessions.put(context, appSession);

}

// XXX
// make sure that we haven't gone over the end of our
// inactive interval -- if so, invalidate and create

// a new appSession

return appSession;
}

void removeApplicationSession(Context context) {
appSessions.remove(context);

}

/**
* Called by context when request comes in so that accesses and

* inactivities can be dealt with accordingly.
*/

void accessed() {
// set last accessed to thisAccessTime as it will be left over

// from the previous access

lastAccessed = thisAccessTime;
thisAccessTime = System.currentTimeMillis();

}

void validate()

Software Control Systems

Crosses Interdisciplinary Boundaries

• Disciplinary boundaries need to be realigned
• New fundamentals need to be created
• New technologies and tools need to be developed
• Education and training need to be restructured

Physical Interaction

Computational Interaction

R
efinem

ent/C
om

pilation

A
bs

tr
ac

ti
on

Platform Layer

Physical Layer

Physical
Object

Cyber-Physical
Object

Physical
ObjectPhysical

Object
Cyber-Physical

Object

Computational
Object

Computational
Object

Computational
Object

Computational
Object

Computational
Object

Communication Platform Computational
Platform

Computational
Platform

Implementation Implementation

CPS Layers and Interactions

CPS and Model-based Design
Design of CPS layers via MDE

 Software models

 Platform models

 Physical models

Challenge: How to integrate the models so that cross-domain
interactions can be understood and managed?

Model Integration for CPS
 Issues
 Cyber models are insufficient, physical models are insufficient
 Many modeling paradigms for physical systems (consider

engineering or physics!)
 Many interaction pathways: P2P, P2C, C2C, P2C2P, C2P2P2C

 Universal modeling language with precisely defined
semantics?
 All models are abstractions of reality from a specific point of

view for a specific purposes. Universality is not pragmatic.
 Universal modeling language with no/sparse semantics?
 [SysML] Enabler but not a complete solution – needs content

semantics

Model Integration for CPS
 Objective: To support the model-

based design of CPS
 Represent the design: both physical

and cyber, and the interfaces
 Allow analysis of the design

 Simulation-based evaluation and V&V
 Discovering unintended interactions
 Formal verification

 Drive the implementation of the
design
 Compile to code, drive the fab

Key: understanding cross-domain
interfaces and interactions

‘Cyber’
Computation

Communication

Physical

Sensor/s Actuator/s

Information

Physical
quantity

Power

Physical Environment

Physical
quantity

Tools for CPS Design
 A Cyber-Physical Systems Design Project: AVM
 Goals
 Basic concepts: Vehicle Forge
 Basic concepts: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Flow Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics

A major DARPA program (a decade after MoBIES):
End-to-end model- and component-based design and
integrated manufacturing of a new generation of vehicles;
i.e. complex, real-life cyber-physical systems. From
infrastructure to manufactured vehicle prototype in five
years (2010-2014).

Engineering/economic goals:
• Decrease development time by 80% in defense systems
(brings productivity consistent with other industries)

• Enable the adoption of fabless design and foundry
concept in CPS

• “Democratize” design by open source tool chain, crowed-
sourced model library and prize-based design challenges

DARPA
Adaptive Vehicle Make (AVM) Program

AVM Scientific Challenge
 Achieve AVM goals by pushing the limits of

“correct-by-construction” design using
− Model-based Technologies
 Computational models that predict properties of cyber-

physical systems “as designed” and “as built”.
 Challenge: Develop domain-specific abstraction layers

for complex CPS that are evolvable, heterogeneous, yet
semantically sound and supported by tools.

− Component-based Technologies
 Reusable units of knowledge (models) and

manufactured components.
 Challenge: Go beyond interoperability – find

opportunities for composition where system-level
properties can be computed from the properties of
components

VU

FANG
Competition
Coordination

Model Library;
Curation

Vehicle
Forge Foundry

FANG
Competitors

OpenMETA
Tools

Curated
Components

Produces
Design Data
MFG
Feedback

Components,
Designs,
Design Spaces

Use
ToolsCollaborate

Using VF

Analysis

Technical Areas

Tools for CPS Design
 A Cyber-Physical Systems Design Project: AVM
 Goals
 Collaborative environment: Vehicle Forge
 Engineering environment: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Flow Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics

Interface to OpenMETA: VehicleForge
Designers

• Public profile to show recent activities
and involvement in design projects

• Designer portfolio publishing résumé
and for self-promotion

• Find designers based on expertise and
résumé

• Private profile for customizing account
and notification settings

• User dashboard showing feeds of
activities from projects, public/private
messages from other users,
announcements from forge-message
channels

• Component discovery interface based on
taxonomical- and faceted search

• Component view/visualization

Components Design Projects

• Self-provisioned collaboration tools
• Wiki,
• Discussion Forum,
• Issue tracking for managing
team work.

• Git/SVN repositories for design
artifacts

• Project and tool-based permission
control

• Notification and Messaging system
(in e-mail or as Dashboard messages)

• Set of available tools is extensible

VehicleForge Gateway

Browser-based
 Coordination and Monitoring Tools
 Design-space Evaluation and Visualizers
 Team-collaboration Tools
 Component Discovery and Subscription
 Service and Resource Allocation

Design &
Manufacturing
Components

Analysis &
Simulation Service

Providers

Component
Vendors

Manufacturers
&

Foundries

In-cloud Compute & Test bench Services

Ex
ch

an
ge Ontologies

Licensing

Ordering Teams’ Design
Storage

CyPhy Desktop Tool
Environment

Integrated
VF Service
Gateway

•MongoDB
•Git, SVN, Swift
•Apache SOLR
•TurboGears (Web
Framework)

•REST Service APIs

 Sharing and Collaboration
 Cloud-based Analysis
 Access to Remote Resources

http://vehicleforge.org/

Service Integration Platform

http://vehicleforge.org/

Tools for CPS Design
 A Cyber-Physical Systems Design Project: AVM
 Goals
 Basic concepts: Vehicle Forge
 Basic concepts: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics

Components span:
• Multiple physics
domains

• Multiple
engineering
domains

• Multiple tools

AVM Components

Component-based:
 Physical
 Cyber
 Cyber-Physical

Battery

VMS
ISG

Servos
/Linkages

Engine
Transmission

Model-based
Model-Integrated Design
and
Manufacturing Process

Parameter/Property
Interfaces
• characterize
• configure

Caterpillar C9 Diesel Engine : AVM Component

High-Fidelity Modelica Dynamics Model

Rotational
Power Port Signal Port

Low-Fidelity Modelica Dynamics Model

Rotational
Power Port Signal Port

Bond Graph Dynamics Model

Rotational
Power Port Signal Port

Detailed Geometry Model (CAD)

Structural
Interface

Structural
Interface

FEA-Ready CAD Model

Structural
Interface

Structural
Interface

Throttle
Signal
Port

map

Power Out
Rotational
Power Port

map

Mount
Structural
Interface

map

Be ll Housing
Structural
Interface

map

Weight
680 kg

Length
1245 mm

Number of Cylinders
6

Maximum Power
330 kW

Height
1070 mm

Width
894.08 mm

Maximum RPM
2300 rpm

Minimum RPM
600 rpm

FEA Geometry

Signal Interfaces
• causal/directional
• logical connect.
• no power transfer

Power Interfaces
• acausal
• physical phen.
(torque/angle..)

• power flow

Structural
Interfaces
• named datums
• surface/axis/point
• mapped to CAD

Dynamics

Detailed Geometry

AVM Component Model

Components Designs Design Spaces

Self-contained building
block

Instantiate and connect
components

Sets of parameterized
architectures

Properties and
Parameters

Parameters, behaviors,
geometry are composed

Extended around seed
designs

Wrapper for detailed
domain models

Can be wrapped as a
component

Shaped by design and
manufacturability
constraints

Aggregates the domain
interfaces into a single set
of component
interfaces

Aggregates the component
interfaces into a single set
of system interfaces.

Accumulates, evolves
design and
manufacturing
knowledge

C1(p)

C2(q)

Pars

Stru.

Signal

Power
C

C1(p)

C2(q)
C1,2(p,q) D1,2(p,q)

Components, Designs, Design Spaces

Modeling

Architecture Design Integrated Multi-physics/Cyber Design Detailed Design

Exploration Modeling V&VSimulation Modeling Analysis

Rapid exploration Exploration with integrated optimization and V&V
Deep
analysis

Physics-based

Structure/CAD/Mfg

SW

• Design Space +
Constraint
Modeling

• Architecture
Modeling

• Static Component
Modeling
(multi-physics)

• Design Space + Behavioral
Constraint Modeling

• Architecture Modeling
• Dynamics Modeling

(multiple abstractions and
multi-physics)

• CAD/assembly modeling
• Coarse Manufacturing

Constraint Modeling

• Architecture
Modeling

• Detailed Domain
Modeling
− CAD
− FEA; thermal, fluid…
− Surrogate gen.

• Detailed Manuf.
Modeling

• RT SW modeling

Design Flow

• Using each component’s mappings
to detailed domain models, system-
level analyses are automatically
composed to verify:
• Static properties
• Multi-physics dynamics
• Geometry
• FEA properties

• META Test Benches provide an
analysis context, including stimulus,
loading, and monitoring.

• Test Benches include algorithms to
produce Metrics, which are used to
evaluate the design against
Requirements.

• META Design Models are mapped
to these Test Benches.

• Design Spaces can also be mapped
to Test Benches, enabling rapid
evaluation of a family of point
designs.

Design #2
METADesign

PowerPlant
Compound

Caterpillar C9 Diesel Engine
AVMComponentInstance

Rotational Power Output
PowerPort (virtual)

TransmissionAndPrimaryDriveshaft
Compound

ABC Corp BR204 Primary Driveshaft
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Rotational Power Output
PowerPort (virtual)

Caterpillar CX31 Transmission
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Weight
ComponentPropertyInstance Weight

ComponentPropertyInstance

Weight
Property

Weight
ComponentPropertyInstance

C1
Calculation
(summing operation)

ValueComposition

ValueComposition

PortComposition

PortComposition

Length
ComponentParameterInstance

TestBenchMapping

Hill Climb TestBench
TestBenchInstance

Driveshaft Length
MappableValueInstance
Output

Transmission and Driveshaft Weight
MappableValueInstance
Input

Rotational Power Output
PowerPort (virtual)

Transmission Output
PowerPort (virtual)

ValueCompositionValueComposition

PortComposition

Design

Design and Test Bench Mapping

Requirements and Test Benches

Tools for CPS Design

 A Cyber-Physical Systems Design Project: AVM
 Goals
 Basic concepts: Vehicle Forge
 Basic concepts: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Flow Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics

Modeling

Architecture Design Integrated Multi-physics/Cyber Design Detailed Design

Exploration Modeling V&VSimulation Modeling Analysis

Rapid exploration Exploration with integrated optimization and V&V
Deep
analysis

Physics-based

Structure/CAD/Mfg

SW

Domain Specific Modeling Languages

• Design Space +
Constraint
Modeling

• Architecture
Modeling

• Static Component
Modeling
(multi-physics)

• Design Space + Behavioral
Constraint Modeling

• Architecture Modeling
• Dynamics Modeling

(multiple abstractions and
multi-physics)

• CAD/assembly modeling
• Coarse Manufacturing

Constraint Modeling

• Architecture
Modeling

• Detailed Domain
Modeling
− CAD
− FEA; thermal, fluid…
− Surrogate gen.

• Detailed Manuf.
Modeling

• RT SW modeling

Design Flow Spans
Heterogeneous Modeling Domains

Behavior Abstraction Layers
Hi

er
ar

ch
ic

al
 d

ec
om

po
si

tio
n

Co
nt

in
uo

us
/d

isc
re

te
 ti

m
e

Lo
gi

ca
l t

im
e

Di
sc

re
te

 e
ve

nt

Model abstraction

Hi
er

ar
ch

ic
al

 d
ec

om
po

si
tio

n

Electrical

Hydraulic

Mechanical

Thermal

Electromagnetic

Physical Cyber

Key META Challenge:
Modeling cross-domain interactions

Modeling Domains

Competition
Coordination

Model Library;
Curation

Vehicle
Forge Foundry

Competitors

OpenMETA
Tools

Curated
Components

Produces
Design Data
MFG
Feedback

Components,
Designs,
Design Spaces

Uses
ToolsCollaborates

Using VF

Analysis

Component Model
Design, Design Space,
Test Bench Models
Component, Design,
Design Space Models
Test Bench Models
Use cases/Scenarios
META/MFG Interface

Information Flows Across
Program Components

Information Architecture Challenges
 Shared conceptualization
 Semantically sound modeling languages
 Integration of many tools and their modeling

languages

Information Architecture Challenges
How should we choose vocabularies, ontologies?
 Could not find standards covering even smaller part of the AVM domain…
 Grow and evolve vocabularies/ontologies during model library

development
 Adopt vocabularies as defined by integrated tools (such as Modelica)
How should we choose modeling language(s)?
 Define yet another modeling language?
 Choose one that already exists and broad enough to cover the design

domain?
 Create a new standard or update an old one?
Unintended consequences
 What are the implications on tools?
 How about “my freedom of abstractions”?
 What is the language evolution trajectory?

The Foundry

Functional
Decomposition

Model

Architecture Design
Space Models

D
om

ai
n-

sp
ec

ifi
c

C
om

po
ne

nt
 M

od
el

s

Structural

Mechanical

Hydraulic

Thermal

Electrical

Data/Contro
l

Structural

M
echanical

H
ydraulic

T
herm

al

E
lectrical

D
ata/C

ontrol

Domain-specific
Subsystem/System Models

D
om

ai
n-

sp
ec

ifi
c

C
om

po
ne

nt
 M

od
el

s

Structural

Mechanical

Hydraulic

Thermal

Electrical

Data/Contro
l

D
om

ai
n-

sp
ec

ifi
c

C
om

po
ne

nt
 M

od
el

s

Structural

Mechanical

Hydraulic

Thermal

Electrical

Data/Contro
l

D
om

ai
n-

sp
ec

ifi
c

C
om

po
ne

nt
 M

od
el

s
Structural

Mechanical

Hydraulic

Thermal

Electrical

Data/Contro
l

D
om

ai
n-

sp
ec

ifi
c

C
om

po
ne

nt
 M

od
el

s

Structural

Mechanical

Hydraulic

Thermal

Electrical

Data/Contro
l

D
om

ai
n-

sp
ec

ifi
c

C
om

po
ne

nt
 M

od
el

s

Structural

Mechanical

Hydraulic

Thermal

Electrical

Data/Contro
l

Complexity Evaluation

Adaptability Evaluation

Design Model of a cyber-
physical system. Uses
abstraction and hierarchy.

Models of the design space.
Uses:
- Abstraction
- Containment
- Alternatives/options
- Parametric components

Functional decomposition
hierarchy, derived from
requirements

Concrete, domain- specific
models of components and
subsystems linked to the
Architecture Design Model.

Technology
Constraints

M
E

TA

Refinement

C
on

ve
nt

io
na

l

Architecture Design Model

Design Space Exploration

Verification/Validation

First idea…

Impact: Open Language Engineering Environment  Adaptability of Process/Design
Flow  Accommodate New Tools/Frameworks, Accommodate New Languages

SL/SF
MetaModel

CAD Integration
MetaModel

CAD
Meta

Model Integration Language - CyPhy

ab
st

ra
ct

io
n

Hierarchical Ported Models /Interconnects
Structured Design Spaces
Model Composition Operators

Semantic
Interface

Structural
Semantics

Semantic
Translators

CyPhy
SL/SF

CyPhy
 SEER

CyPhy
 CAD

Transformation
Semantics

Semantic
Backplane

Behavioral
Semantics

Domain Specific Tools and Frameworks

Pro-E Dymola

The Case for Model Integration Languages…

doTransition (fsm as FSM, s as State, t
as Transition) =

require s.active
step exitState (s)
step if t.outputEvent <> null then

emitEvent (fsm, t.outputEvent)
step activateState (fsm, t.dst)

Mathematical and
physical foundations

Domain-Specific
Environments

Domain Specific
Design Automation
Environments:

• Automotive
• Avionics
• Sensors…

Tools:
• Modeling
• Analysis
• Verification
• Synthesis

Key Idea: Use models in domain-specific design flows and ensure
that the final design models are rich enough to enable production of
artifacts with sufficiently predictable properties.
Impact: significant productivity increase in design technology

Design
Requirements

Production
Facilities

Challenges:
• Cost of tools
• Benefit only

narrow domains
• Islands of

Automation

Model-Based Design

doTransition (fsm as FSM, s as State, t
as Transition) =

require s.active
step exitState (s)
step if t.outputEvent <> null then

emitEvent (fsm, t.outputEvent)
step activateState (fsm, t.dst)

Semantic Foundation
Component Libraries

Domain-Specific
Environments

Metaprogrammable
Tools, Environments

Metaprogrammable
Tool Infrastructure

• Model Building
• Model Transf.
• Model Mgmt.
• Tool Integration

Explicit Semantic
Foundation

• Structural
• Behavioral

Key Idea: Ensure reuse of high-value tools in domain-specific
design flows by introducing a metaprogrammable tool infrastructure.
VU/ISIS implementation: Model Integrated Computing (MIC) tool
suite (http://repo.isis.vanderbilt.edu/downloads/)

Layer

Design
Requirements

Production
Facilities

Domain Specific
Design Automation
Environments:

• Automotive
• Avionics
• Sensors…

Meta

Metaprogrammable Design Tools
“Freedom of Abstractions”

http://repo.isis.vanderbilt.edu/downloads/

Component
Model

Design
Model

Design Space
Model

Requirement
Model

Result
Package

CyPhy
Model Integration Language

Test Bench
Integration Language

Embedded System
Modeling

Language (ESMOL)
CADModelica

Bond
Graph

FEA

Probab.
Analysis

(PCC)

Parametric
Exploration
Tool (PET)

Design Data Package (DDP)

Signal Flow
Modeling
Language

Software
Architecture

Modeling
Language

Deployment
Modeling
Language

Software
Component

Modeling
Language

DESERT

Qualitative
Abstraction

META Ontologies

Interface &
Composition
Vocabulary

Behavior
Vocabulary

Testing
Vocabulary

VehicleForge
Ontology iFAB Ontology

Vehicle Component
Vocabularies

<<Note>>
Notional/incomplete.

Currently includes
characterizations of

supplier data

Relational
Abstraction

Fault
Modeling

Models and
Modeling
Languages

Standardized
Vocabularies
and
Core Types

OpenMETA
Information Architecture

Summary of OpenMETA – Approach to
Information Architecture
 Model-Integration Language: CyPhyML
 Use of Metaprogrammable tools (MIC Tool Suite of ISIS/Vanderbilt)
 Use of Semantic Integration (see later)

Tools for CPS Design
 A Cyber-Physical Systems Design Project: AVM
 Goals
 Basic concepts: Vehicle Forge
 Basic concepts: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Flow Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics

Modeling

Architecture Design Integrated Multi-physics/Cyber Design Detailed Design

Exploration Modeling V&VSimulation Modeling Analysis

Rapid exploration Exploration with integrated optimization and V&V
Deep
analysis

Physics-based

Structure/CAD/Mfg

SW

• Design Space +
Constraint
Modeling

• Architecture
Modeling

• Static Component
Modeling
(multi-physics)

• Design Space + Behavioral
Constraint Modeling

• Architecture Modeling
• Dynamics Modeling

(multiple abstractions and
multi-physics)

• CAD/assembly modeling
• Coarse Manufacturing

Constraint Modeling

• Architecture
Modeling

• Detailed Domain
Modeling
− CAD
− FEA; thermal, fluid…
− Surrogate gen.

• Detailed Manuf.
Modeling

• RT SW modeling

Design Flow

Design Flow Integration Challenges
 How to start the design process?
 How to help its convergence to a “good enough”

solution?
 How to link all the tools?

META Design Flow

OpenMETA “Composers”

OpenMETA Tools (used by competitors in FANG)

Seed Design
(Spaces)

Requirements /
Test Benches

Vehicle
Forge

(Component
Exchange)

Competition
Coordinator

Co
m

po
ne

nt

M
od

el
s

Seed Design SpacesSeed Design SpacesEvolve Design
Spaces

Compose with Test
Benches

META ComposersMETA ComposersMETA Composers
KPP

SIM
Create

Components
META ComposersMETA ComposersMETA Composers

Scenario
Specification

Environment
Specification

Test
Article

Instrumentation

Metrics &
Requirements

Parameters

Executable Requirements and
Test Bench Concepts

Example for Test Benches to Evaluate
FANG Requirements

Components

Components
Subsystem
Design Spaces

Design Space
Evolution
Requirements,
Design Rules 
Constraints

Design
Architectures

Constraint-guided Design Space
Pruning

Architecture Exploration
Using Interface Abstractions

Multiple Physics DomainsMultiple Fidelity Behavior Models

Design
Architectures

Simulation Test Bench for Behavioral Properties

KPP

KPP

Uncertainty
Propagation &
Estimation

PCC

Design Space Exploration Using
Multi-Fidelity ODEs

Design #2
METADesign

PowerPlant
Compound

Caterpillar C9 Diesel Engine
AVMComponentInstance

Rotational Power Output
PowerPort (virtual)

TransmissionAndPrimaryDriveshaft
Compound

ABC Corp BR204 Primary Driveshaft
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Rotational Power Output
PowerPort (virtual)

Caterpillar CX31 Transmission
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Weight
ComponentPropertyInstance

Weight
ComponentPropertyInstance

Weight
Property

Weight
ComponentPropertyInstance

C1
Calculation
(summing operation)

ValueConnector

ValueConnector

PortConnector

PortConnector

Length
ComponentParameterInstance Rotational Power Output

PowerPort (virtual)

Design #2
METADesign

PowerPlant
Compound

Caterpillar C9 Diesel Engine
AVMComponentInstance

Rotational Power Output
PowerPort (virtual)

TransmissionAndPrimaryDriveshaft
Compound

ABC Corp BR204 Primary Driveshaft
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Rotational Power Output
PowerPort (virtual)

Caterpillar CX31 Transmission
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Weight
ComponentPropertyInstance

Weight
ComponentPropertyInstance

Weight
Property

Weight
ComponentPropertyInstance

C1
Calculation
(summing operation)

ValueConnector

ValueConnector

PortConnector

PortConnector

Length
ComponentParameterInstance Rotational Power Output

PowerPort (virtual)

Design #2
METADesign

PowerPlant
Compound

Caterpillar C9 Diesel Engine
AVMComponentInstance

Rotational Power Output
PowerPort (virtual)

TransmissionAndPrimaryDriveshaft
Compound

ABC Corp BR204 Primary Driveshaft
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Rotational Power Output
PowerPort (virtual)

Caterpillar CX31 Transmission
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Weight
ComponentPropertyInstance

Weight
ComponentPropertyInstance

Weight
Property

Weight
ComponentPropertyInstance

C1
Calculation
(summing operation)

ValueConnector

ValueConnector

PortConnector

PortConnector

Length
ComponentParameterInstance Rotational Power Output

PowerPort (virtual)

Design #2
METADesign

PowerPlant
Compound

Caterpillar C9 Diesel Engine
AVMComponentInstance

Rotational Power Output
PowerPort (virtual)

TransmissionAndPrimaryDriveshaft
Compound

ABC Corp BR204 Primary Driveshaft
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Rotational Power Output
PowerPort (virtual)

Caterpillar CX31 Transmission
AVMComponentInstance

Rotational Power Input
PowerPort (virtual)

Weight
ComponentPropertyInstance

Weight
ComponentPropertyInstance

Weight
Property

Weight
ComponentPropertyInstance

C1
Calculation
(summing operation)

ValueConnector

ValueConnector

PortConnector

PortConnector

Length
ComponentParameterInstance Rotational Power Output

PowerPort (virtual)

Design
Architectures

FEA Testbench for Structural Properties

KPP

CAD Testbench for Physical Properties

KPP

1) maximum shear stress,
2) maximum bearing stress,
3) maximum Von Mises stress
4) factor-of-safety

1) Bounding
box

2) Center of
Gravity

3) Dimensions

Design Space Exploration Using
Geometry and FEA

• Time-triggered Model of Computation
• TT bus (or emulated TT bus)

Design Architectures
with deployed
component dynamics

Hybrid Dynamics
Models

SW Component
Architecture

Synthesis

SW Component
Architecture

Timing Model

Component Code
Generation

Component Code
WCET Anal.

System Platform
Model

System
Architecture

Synthesis

Scheduling and
Schedulability

Analysis

Implemented
Dynamics

Model Synthesis

Certificates

System
Integration

Code Synthesis

structure + composed beh.

Design Architectures
with ideal component
dynamics

• Event-triggered Model of Computation
• CAN bus

OpenMETA Software Tool Chain

Design Space Evaluation Visualization

Pairwise Visualization of Metrics

Probabilistic Certificates
of Correctness (PCC)

META Model of
Structural Connections

CAD-Independent
Assembly

CAD Tool
Specific Drivers

iFAB Interface
(partial)

BOM,
Assembly,
GD&T, …

Geometric Reasoning:
CAD Assembly Composition

Tools for CPS Design

 A Cyber-Physical Systems Design Project: AVM
 Goals
 Basic concepts: Vehicle Forge
 Basic concepts: OpenMETA

 Information Architecture Challenge
 OpenMETA Design Flow Integration Challenge
 Semantic Integration Challenge
 Structural Semantics
 Behavioral Semantics

META Semantic Integration

Formal Verification
• Qualitative reasoning
• Relational abstraction
• Model checking
• Bounded model checking

Distributed Simulation
• NS3
• OMNET
• Delta-3D
• CPN

Equations
Modelica-XML

FMU-ME
S-function
FMU-CS

High Level
Architecture
Interface (HLA)

Composition
• Continuous Time
• Discrete Time
• Discrete Event

• Energy flows
• Signal flows
• Geometric

Hybrid
Bond
Graph

Modelica
Functional
Mock-up

Unit

Embedded
Software
Modeling

TrueTimeSimulink/
Stateflow

Stochastic Co-Simulation
• Open Modelica
• Dymola

The Need for Formal Semantics

Concept of “Semantic Integration”

• Tight integration from architecture modeling to
physics-based modeling

• Integrated multi-physics modeling
• Bridging gap between computation and physics domains
• Tight integration of structural and behavioral models
• Emphasis is on automation and scaling
• META tool suite designed for rapid evolution and extensibility

• Agility is achieved by introducing a
Semantic Backplane

• Semantic Backplane is implemented via
– tools and methods for modeling

language specification, validation,
and transformations

– tools and methods for explicit
representation of and computation
with well-defined structural and
behavioral semantics

– metamodel and transformation
libraries

– metaprogrammable tools

Cost of Model Integration
Languages: “Semantic Backplane”

 History: Foundations for
Embedded Systems NSF ITR;
Ethan Jackson at VU 2005-
2008

 Microsoft Research
(Bellevue & Aachen);
Satisfiability Modulo Theory
Solver (Z3); VS distribution

http://research.microsoft.com/formula

 Foundation: Algebraic Data
Types (ADT) and First-order
logic with fixpoints (FPL)

 Parameterized with
background theories (bit
vectors, term algebras, etc.

 Semantics is defined by
constraint logic
programming (CLP)

 Evolving structures;
temporal logic

Convergence to a Formal Framework:
FORMULA

http://research.microsoft.com/formula

Formalization of Semantics - Structural

}{),(nilCYD =

Behavioral Semantics defines exhibited behavior of
models by
1. Specifying a translation to a domain with well-

understood operational semantics
2. Specifying a translation to a mathematical domain

defining behaviors denotationally (e.g. symbolic DAEs)

Use of Behavioral Semantics Specifications:
• Validating/understanding behaviors via simulation
• Generating behaviors using “reference semantics” and

testing tools w.r.t. reference semantics
• Invariance checking
• Formalization  first steps toward proofs
• Tracking dependences in tool suites

Formalization of Semantics –
Behavioral

Layers of the Semantic Backplane

Structure of the Semantic Backplane

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

domain AcausalBG_elements
{

primitive Sf ::= (id: String).
primitive Se ::= (id: String).
primitive R ::= (id: String).
primitive C ::= (id: String).
primitive I ::= (id: String).
primitive TF ::= (id: String).
primitive GY ::= (id: String).
primitive ZeroJunction ::= (id: String).
primitive OneJunction ::= (id: String).
Source ::= Sf + Se.
Storage ::= C + I.
OnePort ::= Source + R + Storage.
TwoPort ::= TF + GY.
BGElement ::= OnePort + TwoPort.
Junction ::= ZeroJunction + OneJunction.
BGNode ::= BGElement + Junction.
primitive Bond ::= (id: String).
[Closed] primitive Src ::= (Bond,BGNode).
[Closed] primitive Dst ::= (Bond,BGNode).

}

Metamodel of a simplified acausal
Bond Graph DSML

Formal metamodel of a simplified Bond
Graph DSML

Metamodel and Formal Metamodel - ADTs

• Structural semantics is composed
of constraints on model structure

• Modeling tools need to check
constraints during modeling

• A well-formed model can be mapped
into some behavior

Part of Structural Semantics for acausal
Bond Graphs

[] ': YY RR 

() { }CrRrCYD Y =∈= ||,

() { }
[] '''

'

:
'||','

YY

Y

RR
CrRrCYD



=∈=

1
2
3
4
5
6
7
8
9
10
11
12
22

domain AcausalBG_elements
{
primitive Sf ::= (id: String).
primitive Se ::= (id: String).
primitive R ::= (id: String).
//…

primitive TF ::= (id: String).
primitive GY ::= (id: String).
primitive ZeroJunction ::= (id: String).
primitive OneJunction ::= (id: String).
Source ::= Sf + Se.
//..

}

1
2
3
4
5
6
7
8
11
10
11
12
13
17

domain DAEquations
{
primitive Variable ::=
(name: String, id: String).

primitive Param ::= (id: String).
primitive Neg ::= (Term).
primitive Inv ::= (Term).
//..
Term ::= Variable + Param + Neg + Inv + Mul + Sum.
primitive Eq ::= (Variable, Term).
primitive DiffEq ::= (Variable, Term).
primitive SumZero ::= (Sum).
Equation ::= Eq + DiffEq + SumZero.

}

1
2
3
4
5
6
7
8
9

10
33

transform BG_DenotationalSemantics
from in1::AcausalBG
to out1::DAEquations

{
Eq(ea,px) :- x is Se, Src(a,x).
Eq(fa,px) :- x is Sf, Src(a,x).
Eq(ea, Mul(px,fa)) :- x is R, Dst(a,x).
DiffEq(ea, Mul(Inv(px),fa)) :-
x is C, Dst(a,x).

//…
}

Specifying Behavioral Semantics

1
2
3
4
5
6
7
8
9
10

domain DFA {
primitive Event ::= (lbl: Integer).
primitive State ::= (lbl: Integer).
primitive Transition ::= (src: State, trg: Event, dst: State).
primitive Current ::= (st: State).
nonDeterTrans := Transition(s, e, sp), Transition(s, e, tp), sp != tp.

conforms := !nonDeterTrans.
}

1
2
3
4
5
6
7
8
9

10
11
12
13

transform Step<fire: in1.Event> from in1::DFA to out1::DFA
{
out1.State(x) :- in1.State(x).
out1.Event(x) :- in1.Event(x).
out1.Transition(s, e, sp) :- in1.Transition(s, e, sp).
out1.Current(sp) :- in1.Current(s), in1.Transition(s, fire, sp).
out1.Current(s) :- in1.Current(s),
fail in1.Transition(s, fire, _).

}

Operational Behavioral
Semantics for Finite Automata

CyPhy Languages Structural Specification Behavioral Specification

CyPhy Design/Component
Model

Composition rules, Signal Flow
Directionality, Port Type Coercions

High-Level Equation with Timing (Denotational, DAE)

Component Interchange Connectivity rules, multiplicities HLE via CyPhy (Denotational)

Design Interchange Connectivity rules, multiplicities HLE via CyPhy (Denotational)

CyPhy Design Space Consistency of the variation points Logical Expressions

CyPhy Signal Flow -
Structure

Block Interface Specification, Input/Output
Constraints, Connectivity

High-Level Equation with Timing (Denotational)

CyPhy Signal Flow - State Initial states, MAAB requirements Structural Operational Semantics (Operational)
High-Level Lambda Expressions (Denotational)

Cyber Deployment Required mapping, Unique elements,
naming conventions

N/A

Cyber Execution Schedulability Constraints, Execution
Assignments, Logical Execution Time (LET)
Semantics

Timed Automata (Operational)

Bond Graph Connection constraints, Stroke Directions, High-Level Equation with Timing (Denotational, DAE)

Semantic Backplane

Summary
Lessons Learned building CPS Tools
 Understanding the current limits of correct-by-

construction design using model-based verification
 Significant scalability problems exist even in relatively

simple (but real) systems
 Scalable verification requires strong restrictions on

modeling abstractions (e.g. linear hybrid dynamics, order
reduction) and has to tolerate low data fidelity

 The resulting uncertainty is epistemic (systematic,
unknown in practice) and cannot be characterized
probabilistically

Links
 CPS Virtual Organization: https://cps-vo.org
 AVM Program: http://cps-vo.org/group/avm
 Vehicle Forge: https://vehicleforge.vf.isis.vanderbilt.edu/auth/
 AVM Publications: http://www.isis.vanderbilt.edu/biblio/keyword/183
 AVM Tools: https://vehicleforge.vf.isis.vanderbilt.edu/p/metaresources/home/
 Formula: http://research.microsoft.com/formula

https://cps-vo.org/
http://cps-vo.org/group/avm
https://vehicleforge.vf.isis.vanderbilt.edu/auth/
http://www.isis.vanderbilt.edu/biblio/keyword/183
https://vehicleforge.vf.isis.vanderbilt.edu/p/metaresources/home/
http://research.microsoft.com/formula

	Modeling Cyber-Physical Systems: �Challenges and Recent Advances�
	Acknowledgements
	Modeling CPS
	What is a Cyber-Physical System?
	CPS Examples
	CPS Examples
	The Good News…
	…and the Challenges
	Example for a CPS Approach
	Abstraction layers: SW-RTS
	Abstraction layers: PHY-SW-RTS
	Why is CPS Hard?
	CPS Layers and Interactions
	CPS and Model-based Design
	Model Integration for CPS
	Model Integration for CPS
	Tools for CPS Design
	DARPA �Adaptive Vehicle Make (AVM) Program
	AVM Scientific Challenge
	Technical Areas
	Tools for CPS Design
	Interface to OpenMETA: VehicleForge
	VehicleForge Gateway
	Service Integration Platform
	Tools for CPS Design
	AVM Components
	AVM Component Model
	Components, Designs, Design Spaces
	Design Flow
	Requirements and Test Benches
	Tools for CPS Design
	Design Flow Spans �Heterogeneous Modeling Domains
	Modeling Domains
	Information Flows Across �Program Components
	Information Architecture Challenges
	Information Architecture Challenges
	Slide Number 37
	The Case for Model Integration Languages…
	Model-Based Design
	Metaprogrammable Design Tools�“Freedom of Abstractions”
	OpenMETA �Information Architecture
	Summary of OpenMETA – Approach to Information Architecture
	Tools for CPS Design
	Design Flow
	Design Flow Integration Challenges
	META Design Flow
	OpenMETA “Composers”
	Executable Requirements and�Test Bench Concepts
	Example for Test Benches to Evaluate �FANG Requirements
	Architecture Exploration �Using Interface Abstractions
	Design Space Exploration Using �Multi-Fidelity ODEs
	Design Space Exploration Using �Geometry and FEA
	OpenMETA Software Tool Chain
	Design Space Evaluation Visualization
	Pairwise Visualization of Metrics
	Probabilistic Certificates�of Correctness (PCC)
	Geometric Reasoning:�CAD Assembly Composition
	Tools for CPS Design
	The Need for Formal Semantics
	Concept of “Semantic Integration”
	Cost of Model Integration �Languages: “Semantic Backplane”
	Convergence to a Formal Framework: FORMULA
	Formalization of Semantics - Structural
	Formalization of Semantics – �Behavioral
	Layers of the Semantic Backplane
	Structure of the Semantic Backplane
	Metamodel and Formal Metamodel - ADTs
	Part of Structural Semantics for acausal Bond Graphs
	Specifying Behavioral Semantics
	Operational Behavioral �Semantics for Finite Automata
	Semantic Backplane
	Summary�Lessons Learned building CPS Tools
	Links

