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SWITCHING  CONTROL

Classical continuous 

feedback paradigm:
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REASONS  for  SWITCHING

• Nature of the control problem

• Sensor or actuator limitations

• Large modeling uncertainty

• Combinations of the above
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MODELING  UNCERTAINTY

Adaptive control (continuous tuning)

vs. supervisory control (switching)

unmodeled

dynamics

0
parametric

uncertainty

Also, noise   and disturbance
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EXAMPLE

Could also take

controller index set

Scalar system:

, otherwise unknown  

(purely parametric uncertainty)

Controller family:

stable 

not implementable
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SUPERVISORY  CONTROL  ARCHITECTURE
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candidate controllers

...

– switching controller

 – switching signal, takes values in
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TYPES  of  SUPERVISION

• Prescheduled (prerouted) 

• Performance-based (direct)

• Estimator-based (indirect)
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OUTLINE

• Basic components of supervisor

• Design objectives and general analysis

• Achieving the design objectives (highlights) 
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SUPERVISOR

Multi-

Estimator
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Want        to be small

Then       small indicates               likely
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EXAMPLE

Multi-estimator:

exp fast=>
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EXAMPLE

Multi-estimator:
disturbance

exp fast=>
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STATE  SHARING

Bad! Not implementable if      is infinite

The system

produces the same signals
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SUPERVISOR

...
Multi-

Estimator
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Examples:
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EXAMPLE

Multi-estimator:

– can use state sharing
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SUPERVISOR

Switching

Logic
...
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...

Basic idea: 

Justification?

small => small => plant likely in => gives stable

closed-loop system

(“certainty equivalence”)

Plant , controllers:
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SUPERVISOR
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Signals

Generator

1

2

p
...

Basic idea: 

Justification?

small => small => plant likely in => gives stable

closed-loop systemonly know converse!

Need: small => gives stable closed-loop system

This is detectability w.r.t.       

Plant , controllers:
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DETECTABILITY

Want this system to be detectable

asympt. stable

view as output

“output injection” 

matrix

is Hurwitz9 L q : Aq ¡ L qCq

_x = (Aq ¡ L qCq) x + L qeq

Linear case: plant in closed

loop with
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SUPERVISOR

Switching

Logic
...

Multi-
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Switching logic (roughly): 

This (hopefully) guarantees that       is small

Need: small => stable closed-loop switched system

We know:        is small

This is switched detectability
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DETECTABILITY  under  SWITCHING

need this to be asympt. stable

plant in closed

loop with

view as output

Assumed detectable for each frozen value of 

Output injection:

• slow switching (on the average)

• switching stops in finite time

Thus     needs to be “non-destabilizing”:

Switched system:

Want this system to be detectable:
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SUMMARY  of  BASIC  PROPERTIES

Multi-estimator:

1. At least one estimation error (     ) is small

Candidate controllers:

3.      is bounded in terms of the smallest

: for 3, want to switch to

for 4, want to switch slowly or stop 

conflicting

• when

• is bounded for bounded      &

Switching logic:

2. For each      , closed-loop system is detectable w.r.t. 

4. Switched closed-loop system is detectable w.r.t.

provided this is true for every frozen value of
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SUMMARY  of  BASIC  PROPERTIES

Analysis: 1 + 3  =>       is small

2 + 4  =>  detectability w.r.t.
=> state is small 

Switching logic:

Multi-estimator:

Candidate controllers:

3.      is bounded in terms of the smallest

4. Switched closed-loop system is detectable w.r.t.

provided this is true for every frozen value of

2. For each      , closed-loop system is detectable w.r.t. 

1. At least one estimation error (     ) is small

• when

• is bounded for bounded      &
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OUTLINE

• Basic components of supervisor

• Design objectives and general analysis

• Achieving the design objectives (highlights) 
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CANDIDATE  CONTROLLERS
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CANDIDATE  CONTROLLERS

Linear: overall system is detectable w.r.t.      if  

i. system inside the box is stable

ii. plant is detectable

fixed
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Need to show: => P C E,     ,      

=> EC,
i

=> => P
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CANDIDATE  CONTROLLERS

Linear: overall system is detectable w.r.t.      if  

i. system inside the box is stable

ii. plant is detectable

fixed
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Nonlinear: same result holds if stability and detectability are 

interpreted in the ISS /OSS sense: 
external signal
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CANDIDATE  CONTROLLERS

Linear: overall system is detectable w.r.t.      if  

i. system inside the box is stable

ii. plant is detectable

fixed
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For minimum-phase plants, it is enough to ask that

the system inside the box be output-stabilized
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SWITCHING  LOGIC:  DWELL-TIME 

Obtaining a bound on      in terms of       is harder

Not suitable for nonlinear systems (finite escape)

Initialize

Find

no
?

yes

– monitoring signals – dwell time

Wait      time units

Detectability is preserved if      is large enough 
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SWITCHING  LOGIC: HYSTERESIS

Initialize

Find

no yes

– monitoring signals – hysteresis constant

?

or                                                             

(scale-independent)
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SWITCHING  LOGIC: HYSTERESIS

This applies to                                    exp fast,

finite,                bounded       switching stops in finite time=>

Initialize

Find

no yes
?

Linear,                    bounded        average dwell time=>
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TOY  EXAMPLE:  PARKING  PROBLEM

Unknown parameters             correspond to the

radius of rear wheels and distance between them

21
, pp
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p
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cos11 wx 

sin12 wx 

2w

2x

1x


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