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Problem: High-Level Mission Specifications 

Autonomous missions in uncertain environments require: 

1) Support optimization over multiple costs 

2) Handle logical/spatial/temporal constraints 

3) Deal with contingencies at multiple temporal and spatial scales 
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Mission (example): 
 
Starting from START, go to PICKUP location, 
then go one of the DROPOFF locations 
before heading back to START.  
Minimize the expected time of arrival 
with the constraints that the mission can 
be accomplished with at least 60% 
probability and total threat exposure is 
less than 0.4 

Mission + Motion Planning 
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Mission VS Motion Planning 

“Starting from START, go to PICKUP location, then go one of the DROPOFF locations 
before heading back to START. Minimize the expected time of arrival with the 
constraints that the mission can be accomplished with at least 60% probability 
and total threat exposure is less than 0.4” 

 

Mission level planning: 

 Reach some locations (START PICKUP DROPOFF) 

 Optimize a primary goal (expected time) and satisfy constraints 
(probability of mission success and threat exposure) 

 

Motion level planning: 

 “Figure out” how to do execute the above in a complex city-like 
environment flying low between buildings to keep coverage 

 Ensure that you are generating trajectories that are compatible with the 
underlying vehicle dynamics 
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World Model for Mission 
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Labelled Markov Decision Process 



This page contains no technical data subject to the EAR or the ITAR. 

Mission Level Planning 

 Given a mission specification expressed as linear temporal logic (LTL) obtain 
Deterministic Finite State Automaton (DFA) 

 

 

 

 

 

 MDP represents the world, the actions and the 
costs 

 

 Combine the MDP and DFA to obtain a CMDP  

 

 Solve CMDP to obtain (randomized)  
mission level policy (plan) 
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Starting from START, go to PICKUP location, then go one 

of the DROPOFF locations before heading back to START 
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Motion Level Planning 
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 Responsible to execute the mission level policy at a lower level 

 

 

 

 

 

 

 

 

 

 

 Use of evidence grid to represent  
occupied/unoccupied space  

 

 How do we ensure that there is “consistency” between the mission level 
planning cost and constraints and the low-level planning objective?  
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Hierarchical Planning 

 Costs and constraints between the different levels of the hierarchy are in 
correspondence across layers 
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Probabilistic Roadmaps 
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 Samples can be drawn in a deterministic or in a stochastic fashion 

 

 Useful for planning in higher dimensional spaces - e.g. in 3D considering 
(𝑥, 𝑦, 𝜃) or 6D considering position 𝑥, 𝑦, 𝑧 +  velocity (𝑣𝑥, 𝑣𝑦, 𝑣𝑥)  

 

 PRM sampling methods are probabilistic complete 

1. Randomly sample the configuration space 
 

2. Remove samples that are not collision free 
 

3. Determine path compatible with vehicle 
dynamics that connects the nodes 
 

4. Connect Start and Goal to closest nodes 
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Multi-objective Path Planning 

 We are interested to compute a plan that minimizes two costs functions 𝐶 .  
and 𝑄 .  

  To pose this problem we consider the cost function 𝐶(. ) as primary cost and 
𝑄 .  as a secondary cost (constrains) and pose the following problem where 
now 𝑏 is considered a free variable 

 

 

 

 

 One obtains the full Pareto 
curve 
 

 For monotonic non-decreasing  
costs this graph can be search  
very efficiently 
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R. Takei, W. Chen, Z. Clawson, S. Kirov, and A. Vladimirsky, “Optimal 
control with budget constraints and resets”, SIAM Journal on Control 
and Optimization, to Appear. 
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Multi-Objective Planning Under Localization Constraints 

 We are interested in a multi-objective problem where the secondary cost is a 
state dependent function  

 

 In particular, taking into account strong priors, determine a path that 
minimizes length and position accuracy (never exceeding a maximum) 

 

 

 

 

 

 

 

 Problem: 
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Planning in Belief Space 

This problem is related to work at MIT by Prof. Roy group 

 

 Single objective: 

 Trace of the state estimate error covariance 

 Propagate the EKF over paths 

 Minimize uncertainty at the goal state 

 

 Covariance factorization for fast computation: 

 

 Write 𝑃𝑡 = 𝐵𝑡𝐶𝑡
−1 as 

 

 

 

 

 Computation intensive as these weight matrix need be computed across the 
roadmap 
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Problem Setup 
 We consider a general vehicle and sensing model 

 

 

 

 The error covariance for the Extended Kalman Filter 

 

 

 

 

 We assume: 

 Data association is perfect and no misdetection 

 Consistency (mean state close to planned trajectory) 

 

 To alleviate the computation burden of associate to each edge a matrix and 
propagate matrices over the edges we consider the maximum eigenvalue of 
the covariance matrix 𝜆 (𝑃𝑡) 
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Maximum Eigenvalue Bound 

 Given a set of vertices in the roadmap 

 Given a strong prior about the environment 
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Open loop Closed loop 

Worst case approximation 
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Multi-Objective Planning with Localization Constraints  

 The problem we are interested is the following: 

 

 

 

 

 We can consider a similar approach as discussed before, i.e. solving the 
problem on an extended graph: 
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Simulations Results 

 Sensor modalities: IMU + LIDAR to range to building corners 
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The extended graph can become very large 
 

 Planning in a 1𝑘𝑚2 environment 
 100 vertices on the PRM 
 ~2000 edges 

How does one choose the quantization level for the secondary cost? 
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Sparse Extended Graph 

 Consider the change of 𝜆 𝑃0  over an edge 𝑒 ∈ ℛ 
 
 
then for each edge 𝑒 we can compute the worst-case difference Δ𝑒

∗  as this 
function is concave 
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Two Schemes 

 Uniform 

 

 

 

 

 

 

 Adaptive 
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Results for Adaptive Scheme 

 Sensor modalities: IMU + LIDAR to range to building corners 
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The extended graph can become very large 
 

 Planning in a 1𝑘𝑚2 environment 
 100 vertices on the PRM 
 ~2000 edges 
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Interactions  

 Recall the hierarchical planning   
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Example: Interaction Between Mission and Motion Planning   

1. Mission planning determine optima policy to have autonomous  system go 
from Start to Goal with constraints on missions success and threat exposure 

2. When new threats are found, interaction between planners lead to a new 
mission level policy 

21 



This page contains no technical data subject to the EAR or the ITAR. 

Conclusions 

 Hierarchical Planning 

 Mission planning from LTL specifications define a policy at 
coarse scale 

 Motion planning enables navigation in complex environments 

 “Coupled” multi-objective planning algorithms enable 
autonomous vehicle to deal with contingencies at multiple 
temporal and spatial scales 

 

 Multi-objective path planning 

 Developed a new algorithms that find a path in a complex 
environment that minimizes multiple costs 

 Explored computation/accuracy tradeoffs to ensure 
algorithms can be implemented in real-time. 
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