Intelligent Fault Diagnosis and Recovery in Power Electronic Systems

Weiqiang Chen and Ali M. Bazzi

Advanced Power Electronics and Electric Drives Lab (APEDL) ECE Department and Center for Clean Energy Engineering

UTC-IASE Seminar 03/14/2014

4/7/2014

Outline

- Motivation
- Methodology
 - Simple Logic
 - Fuzzy Logic
- Testing Platform
- Model Validation
- Results
- Conclusions and Future Work

4/7/2014

Motivation

- Power electronics have penetrated many systems in various fields
- Internal and external faults leading to system failures are unavoidable

Electric ship propulsion system. Source: ship-technology.com

Electric car. Source: teslamotors.com

4/7/2014

Motivation

- The general area of energy systems can have critical applications where loss of energy conversion cannot be tolerated
- Of interest are power electronic systems that can:
 - Recover and self heal
 - Adapt to their surrounding
 - Achieve high reliability
 - Have local intelligent control

IGBT Failure Source: microwaves101.com

Failing capacitor Source: clemson.edu

4/7/2014

Motivation

- There exist several fault diagnosis methods in energy systems, utilizing:
 - Fuzzy control theory
 - Wavelet theory
 - Random forests and hidden Markov models
 - D-Matrices, etc.
- There is need to tie some of the fault diagnosis ideas with power electronic systems
- There is also need to achieve a recovery strategy

4/7/2014

- For fault diagnosis, information is needed about the converter under study:
 - Model-based approach
 - Sensor-based approach
 - Combination of both
- Sensors are useful for near-real-time monitoring but:
 - Minimal additional sensors should be introduced for cost purposes
 - Simple and cost-effective sensors are more desirable

4/7/2014

- Recovery can be achieved using a parallel converter:
 - The parallel converter should not be stressed as the primary converter
 - There is no need to have duplicate controllers, sensors, and circuit boards
 - It is logical to utilize parallel power components in the same converter instead.
 - Safety-critical systems and many other systems accept some cost increase for reliability
 - Parallel components should be offline until engaged to replace a failed component

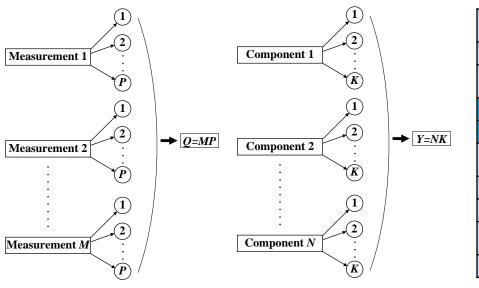
4/7/2014

- Assumptions:
 - The system has slow dynamics to achieve a new set point –Many power electronic applications have fast switching dynamics but slow set point changes (e.g. solar micro-inverter)
 - There exists basic sensing capability in the system
 - Power electronic topology is known, not a black box
 - Faults occur in components, failures occur in the system after certain faults. Component faults can be considered as failures at a component level

4/7/2014

- Define the following:
- *M* measurements exit for essential voltages and/or currents.
- P quantities are evaluated per measurement
- Thus, **Q** measured quantities where $Q = M \times P$
- *N* components are susceptible to faults
- Each component has *K* fault conditions
- Thus, Y different faults could occur in the system, where $Y = N \times K$.

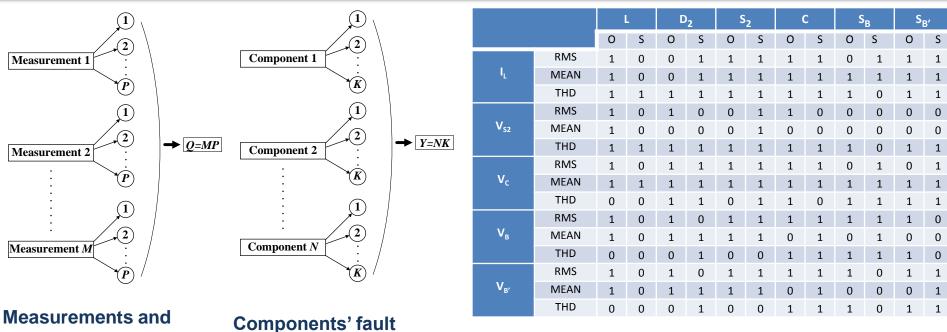
4/7/2014


- A measured quantity is assessed online or in realtime and compared to a pre-determined threshold.
- A decision is made by comparing each of the *Q* quantities to its respective threshold.
 - Example: an average voltage changes by a certain % from the expected nominal
- Threshold comparison yields a logic result: 1 or 0
 - 1: **Q** is more than the acceptable threshold
 - 0: **Q** is less than the acceptable threshold
- The decision for Q inputs takes the form of a Q-bit number: $Z = 2^Q 1$ combinations per fault.

4/7/2014

	f ₁₁		f _{1К}	f ₂₁	•••	f _{2К}		f _{N1}	•••	f _{NK}
q ₁₁	C _{ij}		C _{ij}	C _{ij}	C _{ij}					
:	C _{ij}		C _{ij}	C _{ij}	C _{ij}					
q _{1P}	C _{ij}		C _{ij}	C _{ij}	C _{ij}					
q ₂₁	C _{ij}		C _{ij}	C _{ij}	C _{ij}					
:	C _{ij}	•••	C _{ij}	C _{ij}	C _{ij}					
q _{1P}	C _{ij}		C _{ij}	C _{ij}	C _{ij}					
q _{M1}	C _{ij}		C _{ij}	C _{ij}	C _{ij}					
:	C _{ij}		C _{ij}	C _{ij}	C _{ij}					
q _{MP}	C _{ij}		C _{ij}	C _{ij}	C _{ij}					

Measurements and related quantities


Components' fault conditions

4/7/2014

related quantities

Components' fault conditions

4/7/2014

- If two rows are identical, then one of the measured quantities can be eliminated (redundant information)
- If two or more columns are identical → two or more faults should both be reported

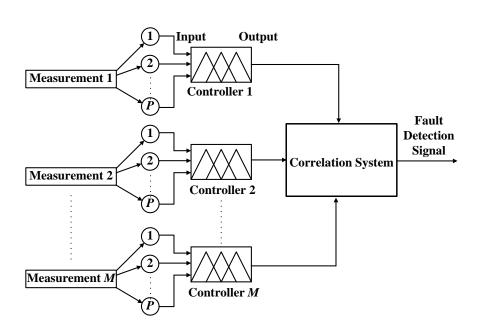
	f ₁₁		f _{1K}	f ₂₁		f _{2к}	f _{N1}		f _{NK}
q ₁₁	C _{ij}								
	C _{ij}								
q _{1P}	C _{ij}								
q ₂₁	C _{ij}								
	C _{ij}								
q _{1P}	C _{ij}								
q _{м1}	C _{ij}								
	C _{ij}								
q _{MP}	C _{ij}								

- Advantage: simple implementation
- Disadvantage: threshold wait time and sensitivity to threshold selection

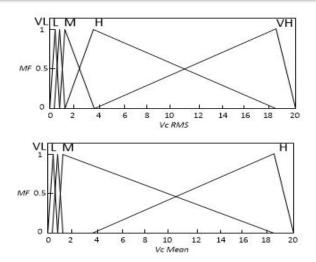
4/7/2014

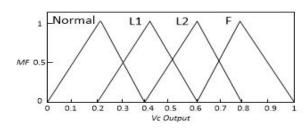
Methodology Fuzzy Logic

- Measured quantities vary with time and waiting for a threshold might not be practical
- Membership functions can be defined for ranges of various quantities
- Decisions can be made on "how close" is the combination of various quantities to a specific fault condition
- Advantage: faster response, more intelligent decision making
- Disadvantage: model-based and requires significant setup time



4/7/2014

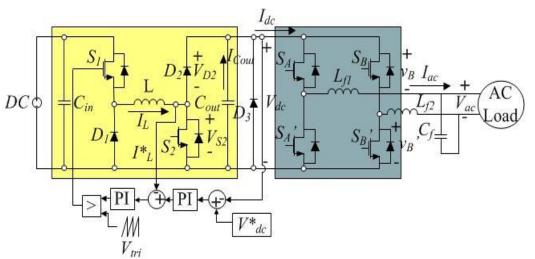



Methodology Fuzzy Logic

Fuzzy Logic System

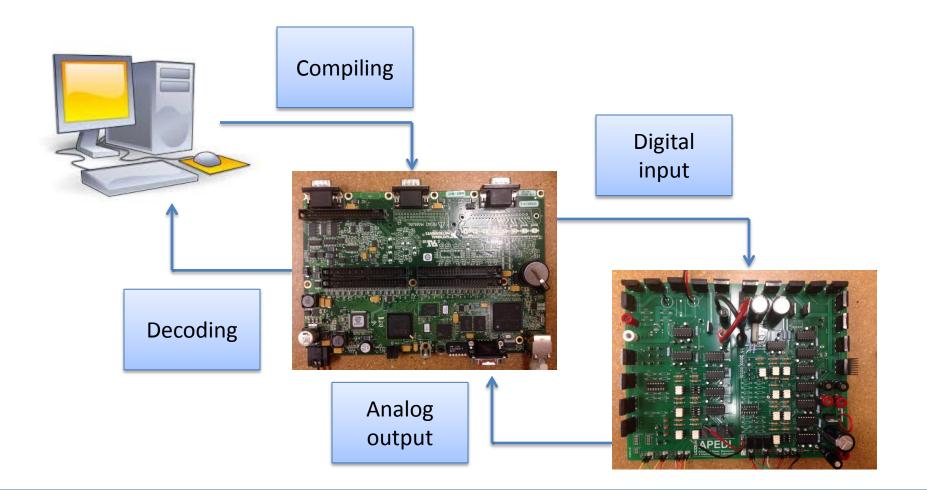
Input membership function

Output membership function


4/7/2014

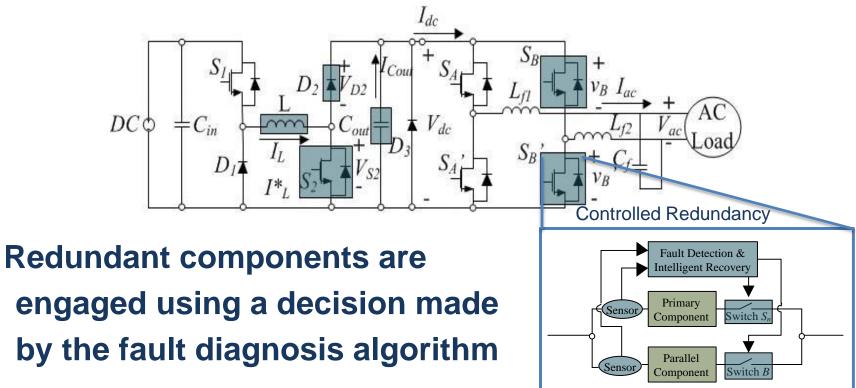
Testing Platform

- Solar PV micro-inverter
- Includes DC/DC and DC/AC stages
- Open- and short-circuit faults are mimicked using series and parallel switches

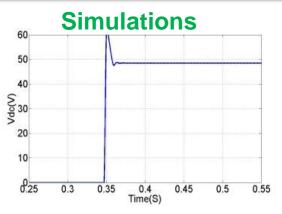


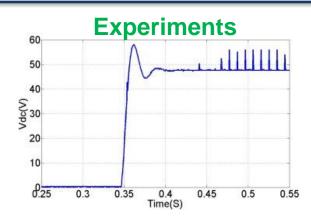
4/7/2014

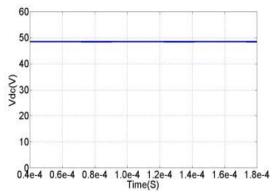
Testing Platform

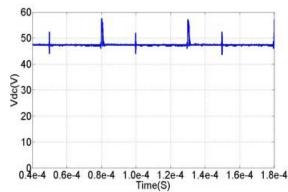

4/7/2014

Testing Platform


 Redundant power components are introduced in highlighted components

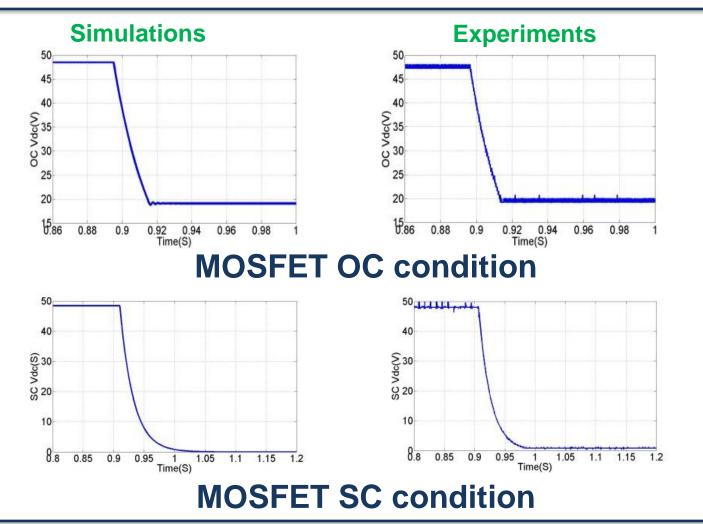





Model Validation Converter (Plant) with Open-Loop Control

DC/DC converter nominal output voltage

Steady-state of DC/DC converter nominal output voltage

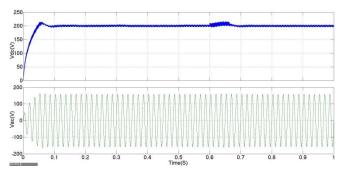


4/7/2014

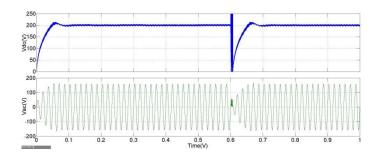
Model Validation Converter (Plant) with Open-Loop Control

4/7/2014

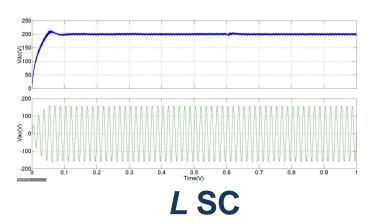
Simple Logic Fuzzy Logic 250 250 200 200 ≥150 ≥100 50 to 200 200 100 100 0 0 -100 Vac(V) -100 -200 -200 0.5 Time(S) 0.1 0.2 0.3 0.4 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.6 C_{out} SC C_{out} SC 250 250 200 200 S150 ≥100 50 to ti to to to 200 200 100 100 Vac(V) o Vac(V) 0 -100 -100 -2000 0.5 1.5 -200 ⁴ 0.5 0.6 0.7 **S**₂ **OC** Time(S) 0.1 02 0.3 0.4 0.8 0.9 $S_2 OC$



4/7/2014


Simple Logic

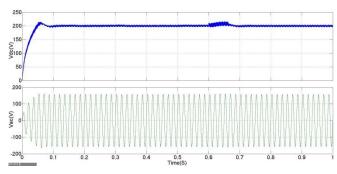
C_{out} OC



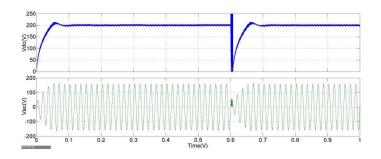
L SC

Fuzzy Logic

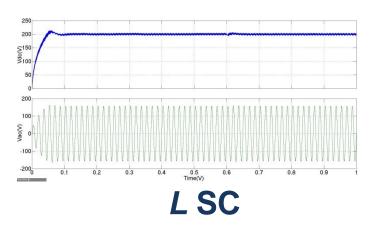
C_{out} OC



4/7/2014


Simple Logic

C_{out} OC



L SC

Fuzzy Logic

C_{out} OC

4/7/2014

Simple Logic

	Fault Occurrence Time t _o (s)	Fault Detection Time t ₁ - t _o (s)	Fault Recovery Time t ₂ - t ₁ (s)
L OC	0.6	0.4875	0.0424
$D_2 OC$	0.6	1.1878	0.0639
S ₂ OC	0.6	0.4897	0.0441
C _{out} OC	0.6	0.0255	0.0643
S _B OC	0.6	0.0472	0.0161
S _{B'} OC	0.6	0.0394	0.0159
L SC	0.6	0.0660	0.0056
$D_2 SC$	0.6	0.0167	0.0636
S ₂ SC	0.6	0.9835	0.2377
C _{out} SC	0.6	0.0195	0.0631
S _B SC	0.6	0.0165	0.0618
S _{B'} SC	0.6	0.0165	0.0629

Fuzzy Logic

Meth od	Fault Occurrence Time t _o (s)	Fault Detection Time t ₁ - t _o (s)	Fault Recovery Time t ₂ - t ₁ (s)		
LOC	0.6	0.0080	0.0450		
$D_2 OC$	0.6	0.0100	0.0300		
S ₂ OC	0.6	0.0088	0.0312		
C _{out} OC	0.6	0.0080	0.0643		
S _B OC	0.6	0.0130	0.0070		
S _{B'} OC	0.6	0.0130	0.0070		
L SC	0.6	0.0035	0.0065		
$D_2 SC$	0.6	0.0083	0.0717		
S ₂ SC	0.6	0.0067	0.0133		
C _{out} SC	0.6	0.0066	0.0631		
S _B SC	0.6	0.0165	0.0618		
S _{B'} SC	0.6	0.0165	0.0629		

4/7/2014

Conclusions & Future Work

- Both methods show ability to accurately diagnose faults and engage redundancy
- Faster diagnosis time is achieved with the more intelligent fuzzy logic, at the cost of setup time
- Recovery time is independent of the diagnosis method as it depends on the system response
- A special case is when the fault is detected while the system is still close to nominal operation
- Implementation on an FPGA is currently in progress

4/7/2014

Questions?

4/7/2014

Copyright © 2014 – Advanced Power Electronics & Electric Drives Lab (APEDL)

ENGINEERING