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Complex Networks: Building Systems
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� 40% of produced energy in the US is consumed by buildings

Energy Efficient Integrated Buildings

Monitoring, Security, 

Occupancy Estimation etc.

Distributed Estimation

Distributed Optimization

Large Sensor 

Networks

  
 

Tosur Tisur Tamb Tzone 

C 

1/hiA 1/hoA 
R 

Qsurfi Qsurfo 
C 

Qstructure 

Rwin 

Thermal models

CFD, Reduced Order 

Models

Distributed Computation

Uncertainty Quantification

Need 

Scalable &

Decentralized

Solutions

Large ODE

Models
Analysis

& Control

This page contains no technical data subject to the EAR or the ITAR.



� Renewable energy sources: DOE’s 2030 goal – 20% of all 

energy to have renewable sources

Complex Networks: Smart Grids & Aircraft Systems
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Decentralized Control
Stability Analysis

Heterogeneous 

Switching

systems

No 

Central 

Control 

• Uncertainty 

Quantification
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Complex Networks: UAV Swarms/Sensor Nets
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� Networks of mobile sensors needed for various tasks

UAV Swarm

[Mathew and Mezic, ’09]

Path planning

for search & rescue
Centralized:

Changing 

Environment?

Sample Prior Distribution 

Sensor Coverage

[Ghrist and Jadbabaie]

Slow:

Random Walk/

Consensus

� Novel algorithms needed for deployment in applications

� Mobile sensors need to self-organize using local information

� Role of uncertainty quantification for random parameters
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Complex Networks: Social Graphs

� Analysis of large social networks: time-varying and multi- attributed 

interactions

� Games on social networks

� Other important complex networks: MEMS oscillator networks, biological 

systems etc. 6

GUARD-DOG Program

Parallel/Cloud Computation Community detection
Social Network

Scalable algorithms
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Scalable Solutions for Complex Networks

� “Divide and Conquer” - help build scalable solutions for 

various problems
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Partition Graph/Data

� Decentralized, scalable and fast

solutions for clustering, computation, 

estimation, uncertainty quantification 

etc.

� Clustering enables scalability

Implement distributed

algorithm

Desired:
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� “Can one hear the shape of a drum?” – an article by Mark Kac:

do frequencies of vibrations determine the shape uniquely?

� Sparked decades of mathematical activity!

� Answer: Yes (if convexity assumed)

� Similarly we ask: Can one hear

the properties of a graph 

(such as cluster locations)? 

� Answer: Yes (if no symmetries)

“Shape” from Harmonic Analysis
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M. Kac, Can One Hear the Shape of a Drum, American Mathematical Monthly, 1966

Non-convex drums with same frequencies
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Graph Analysis

� Matrix approach for representing graphs:

� Laplacian has nice properties

� Eigenvalues:

� Eigenvectors:

� Eigenvalues: Connected components, diameter etc

� Spectral Gap: Number of clusters

� Eigenvectors: Clustering, Localization, Sensor Coverage,

PageRank etc
9

F. Chung, Spectral Graph Theory, 1997
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Spectral Clustering (Centralized)

� Partition graphs based on:

where,

10

U. v. Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17(4), 2007

NP-Complete

Clusters: set of nodes strongly connected to each other

Relax problem

Rayleigh-Ritz

Strength of connection

Size of clusters
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Spectral Clustering (Centralized)
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.….
Eigenvector of Laplacian holds the clustering information

M. Fiedler, Czechoslovak Mathematical Journal, 1975.

+ +- - + +

It  is extended to more than 2 clusters by using higher 

eigenvectors (combinations of signs)

Very popular approach

Drawbacks:

• Solution is expensive for large graphs

• Central computer needed
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Distributed Spectral Clustering

� Orthogonal Iterations on a graph

� Random walks can be slow – equivalent to evolving the 

heat equation on the graph. Convergence:
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:   Measure of time for random walk to get to steady state
D. Kempe and F. McSherry, A Decentralized Algorithm for Spectral Analysis, 2008.

Random Walk on the graph  
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Insight

Traditional distributed clustering uses random walks

� Heat Equation (random walks):

� On the graph:                             

� Wave equation:

� On the graph: 

The solution of the heat equation dies out, but the wave 

equation does not

13

• T. Sahai, A. Speranzon and A. Banaszuk, Hearing the Clusters in a Graph: 

A Distributed Algorithm,  Automatica, 2012.

• M. Hein, J.-Y. Audibert and U. V. Luxburg, From Graphs to Manifolds - Weak

and Strong Pointwise Consistency of Graph Laplacians, 2005.

This page contains no technical data subject to the EAR or the ITAR.



14

Example of the Algorithm
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Main Result
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Evolving the wave equation combined with local frequency estimation is 

equivalent to computing the eigenvectors of the graph Laplacian

This page contains no technical data subject to the EAR or the ITAR.



Proof Outline
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Need to start with a random initial condition
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Performance vs. Random Walk 

� It can be shown that:

� Time needed to resolve the 

lowest frequency in the FFT

� Compare to                      [Kempe & McSherry, 2008]

� Orders of magnitude faster than random walks

� is a function of             
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Comments about the Wave Equation

� Computes all eigenvectors and eigenvalues of the Laplacian 

� Useful for distributed graph analysis and self-organizing 

networks

� Algorithm is decentralized (no central node required)

� Fast Convergence (faster than random-walk based methods)

� Only scalar quantities exchanged (low communication cost)
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Results: Line Graph
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Applications & Results
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Fortunato Benchmark Example

T. Sahai, A. Speranzon and A. Banaszuk, Hearing the Clusters in a Graph: A Distributed Algorithm

� Community detection in MapReduce (DARPA) 

� Algorithm to detect disconnected components and isolated 

nodes

� Scalable analysis of large quantities of sensor data

Contaminant Flow in Buildings

� Sensors self-organize into groups

� Accelerates distributed estimation 

by orders of magnitude

� Extends work by Mathew and Mezic 2009

� Mobile agents self-organize into groups

� Decentralized computation of trajectories

Decentralized Path Planning

Social Network  & Data Analysis

Distributed Estimation

This page contains no technical data subject to the EAR or the ITAR.



Distributed Computation

� Waveform Relaxation: Algorithm for distributed simulation of 
differential equations on parallel computers

21

J. K. White and A. Sangiovanni-Vincentelli, Relaxation Techniques for the Simulation of VLSI Circuits,
1986.

Split

Compute

Iterate

Variables in CPU #1

Variables in CPU #2

Goal: Simulate for the interval 
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Distributed Computation

22

Waveform Relaxation always converges as long as the original 

function is Lipschitz continuous

S. Klus, T. Sahai, C. Liu and M. Dellnitz (2011), An Efficient Algorithm for the Parallel Solution of 
High-Dimensional Differential Equations,  Journal of Computational and Applied Mathematics.
. This page contains no technical data subject to the EAR or the ITAR.



Adaptive Waveform Relaxation
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Waveform relaxation can be represented as: 

� Split            into parts    

�Reduce            by reducing       when 

estimate for           is large      

Take large steps when function changes slowly

and small steps when function changes fast

� Start with an initial time interval of say: 

� Compute the solution using waveform relaxation

� Let    be the number of desired iterations and    the desired tolerance

� Estimate the next time interval:

� Where          is estimated using a standard extrapolation formula

Adaptive Waveform Relaxation
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Optimal Splitting for AWR
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� Optimal splitting changes with the numerical scheme and         

step size: NP complete

Optimal for 

• Implicit Euler:

• Implicit Euler:   

Optimal for 

• Implicit Euler:

• Trapezoidal Rule:   

Spectral Clustering is a good heuristic for splitting (symmetrized Jacobian)
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Thermal Model of a Building

Energy consumption in Buildings

Equations for
Rooms & Walls

HVAC Appliances/People

SolarConductionNewton’s Law of Cooling
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Thermal Model of a Building
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Energy consumption in Buildings   
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Propagating Uncertainty through Complex Networks
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Given input (parametric) uncertainty, quantify the output uncertainty:

� Monte Carlo

� Quasi-Monte Carlo

� Response Surface Methods

� Polynomial Chaos/Probabilistic Collocation Methods

� Combination of the above
T. Sahai, V. Fonoberov and S. Loire (2010), Uncertainty as a stabilizer of the head-tail ordered phase in 

carbon-monoxide monolayers on graphite, Physical Review B.
This page contains no technical data subject to the EAR or the ITAR.



Determining          determines 

Polynomial Chaos 
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Expand the state variables (or outputs) as:

Starting with the system: 

Exponential convergence rate for processes with finite variance.

Performing a Galerkin Projection gives:

Curse of dimensionality:

Orthogonal Polynomials

X. Wan and G. E. Karniadakis (2008), Recent Advances in Polynomial Chaos Methods and 
Extensions 

: distribution on 
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UQ for Hybrid Systems

� H-PC + Wavelet expansions + Boundary Layers help deal with hybrid 

dynamical systems – curse of dimensionality

29

T. Sahai and J. M. Pasini, Uncertainty Quantification in Hybrid Dynamical Systems, 2013

Hybrid dynamics

: Uncertain

Bouncing Ball Monte Carlo Boundary Layer

Wavelets

H-PC:
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Scalable Uncertainty Quantification

� Use decentralized clustering to partition the dynamical 

system into “weakly” interacting components
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A. Surana, T. Sahai and A. Banaszuk (2012), Iterative Methods for Scalable Uncertainty 
Quantification in Complex Networks, International Journal of Uncertainty Quantification.

Weak interactions –

lower order expansions

Random Parameters
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Results: Scalable UQ
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� Consider a two room model with uncertain parameters

2 rooms give a 10 state model

Random parameters – Gaussian distributions

60 state model

Clustering + AWR
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Conclusions/Future Work

� Motivated from continuous approaches one can construct efficient 

approaches for NP-hard problems such as graph partitioning

� Scalability is enabled by graph decomposition

� Simulating high-dimensional dynamical systems

� Polynomial chaos based uncertainty quantification

in complex networks

� Future Directions include:

� Distributed Computation: Index 2 DAEs, Equation-Free Methods

� Clustering of time varying multi-attributed graphs for  distributed 

computation, sensor coverage and localization

� Machine Learning for “Big-Data” problems
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Thank You!
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