Democratizing Energy Technology

Dane A. Boysen, PhD

April 17, 2017 University of Connecticut

EARTH AT NIGHT

WORLD POPULATION DENSITY

POPULATION AND ENERGY USE

Technologies that Democratized the World

Democratizing Technology

WHAT ARE THE DEFINING FEATURES?

- 1. Empowers the little guy
- 2. Never developed by the incumbent
- 3. Displaces entrenched incumbent
- 4. Levels the playing field
- 5. Leverages capital of the many
- 6. Modular, mass produced, standardized
- 7. Fast innovation cycles

...and there are many examples

guns Gutenberg press iso-containers cellular phones personal computers automobiles photovoltaics electric-arc furnaces internet televisions record players

...displaced swords
...displaced illuminated manuscripts
...displaced bulk shipping
...displaced land lines
...displaced central computing
...displaced horses
...displaced solar thermal
...displaced blast furnaces
...displaced theatres
...displaced live musicians

What about energy technology?

Energy Technology Today

COAL POWER PLANT

AMMONIA PLANT

GTL PLANT

Why do we go big?

Economies of Unit Scale

Sources: (1) PJA Tijm. Gas to liquids, Fischer-Tropsch, advanced energy technology, future's pathway. Feb 2010; (2) C. Kopp. The US Air Force Synthetic Fuels Program. Technical Report APA-TR-2008-0102. (2008)

Why do we scale-up?

ARGUMENT

capital cost \propto area [L²] capacity \propto volume [L³] capital cost / capacity \propto [L²]/[L³]

FLAW

pipe thickness ignored hoop stress (constant) $\propto t/r$ capital cost $\propto l \cdot r^2$ capital cost / capacity \propto constant

Why is scale-up a problem?

#1 HUGE CAPITAL RISK

MEGA-PROJECT ECONOMICS

RAND Study:

- 52 mega-projects
- \$0.5B and \$10B (1984 dollars)
- average over budget = 90%

Source: E.W. Merrow. Understanding the outcomes of megaprojects: a quantitative analysis of very large civilian projects, The RAND Corporation, Santa Monica, CA, 1988.

Capital Resources U.S. COMPANIES BY REVENUE, 2007

How many U.S. companies can finance a \$1 billion plant?

Capital Resources GDP OF AFRICAN COUNTRIES, 2015

How many African countries can finance a \$1 billion plant?

Source: https://en.wikipedia.org/wiki/list_of_african_countries_by_gdp_(nominal)

Innovation Challenge

FINANCING ECONOMIES OF SCALE

GTL PLANT

(boe/d)	(\$/bpd)	plant cost
1	47,000k	\$47M
10	10,000k	\$100M
100	2,200k	\$220M
1k	470k	\$470M
10k	100k	\$1,000M

(W_{th})	(kW_{th})	plant cost
100k	660,000	\$65M
1 M	140,000	\$140M
10M	31,000	\$300M
100M	6,600	\$660M
1G	1,400	\$1,400M

Innovation Challenge

FINANCING ECONOMIES OF SCALE

GTL PLANT

(boe/d)	(\$/bpd)	plant cost
1	47,000k	\$47M
10	10,000k	\$100M
100	2,200k	\$220M
1k	470k	\$470M
10k	100k	\$1,000M

POWER PLANT

(W_{th})	(kW_{th})	plant cost	
100k	660,000	\$65M	R&D demo
1M	140,000	\$140M	
10M	31,000	\$300M	pilot demo
100M	6,600	\$660M	
1G	1,400	\$1,400M	commercial

R&D Spending

OFFICE OF FOSSIL ENERGY

FY 2015	\$561M
FY 2014	\$570M
FY 2013*	\$495M
FY 2012*	\$337M
FY 2011	\$434M
FY 2010	\$660M
FY 2009	\$876M
FY 2008	\$465M

Pilot chemical or power plant requires **more than \$200M.**

How can we continue to develop and deploy new technology with vastly inadequate and declining budgets?

#2 DISTRIBUTED CHALLENGES

Developing World DISTRIBUTED MARKETS

AFRICA 17% WORLD POPULATION 1% WORLD FERTILIZER USE

In 1999, Uganda farmers bought urea for \$600/ton, global market price was \$100/ton, why?

- Market size (< 1% global market)
- Transport cost (>\$50/ton, 30% total)
- Finance cost (\$300k, 1 kton)

Source: World Bank, 2015

Rural Power DISTRIBUTED MARKETS

ALASKA POWER EQUALIZATION PROGRAM, 2015

Program subsidizes energy costs between \$0.15-\$1.00/kWh

- Ave electricity price:
- Ave fuel oil price: \$3.97/gal
- Subsidies paid:
- Fuel oil consumed:
- Ave resident energy:
- Population served:
- Communities served:

Source: http://www.akenergyauthority.org/Portals/0/Programs/PCE/Documents/FY15PCEStatisticalRprt.pdf?ver=2016-02-09-071157-843

\$0.49/kWh

\$37 million

27 million gal

5.500 MWh

81,969

190

Biogas DISTRIBUTED RESOURCES

U.S. Methane Emissions in 2013

U.S. METHANE EMISSIONS

- 23-86x worse than CO₂
- 630 Mt_{CO2,eq}
- 10% GHG total
- 1.3 Quads

Source: http://www3.epa.gov/climatechange/ghgemissions/usinventoryreport.html#fullreport

Natural Gas Flaring

DISTRIBUTED RESOURCES

NORTH DAKOTA FLARING

- North Dakota flares roughly 20% of produced natural gas
- Most flaring is under 300 mcf/d, but highly time dependent
- Small wells are uneconomical to bring to market

PROBLEM #1

BARRIER TO INNOVATION

Today's approach for deploying energy technology is to scale-up to huge size to achieve economies of scale, but this requires taking huge capital risk and consequently low technology risk stifling the deployment of technological innovation

PROBLEM #2

DISTRIBUTED CHALLENGES

The energy landscape has dramatically changed over the last decade—presenting new challenges that are fundamentally distributed in nature and for which today's solutions are inadequate

How do we break the hegemony of scale-up?

Economies of Unit Number

FORD MODEL T, 1909-1916

Sources: (1) PJA Tijm. Gas to liquids, Fischer-Tropsch, advanced energy technology, future's pathway. Feb 2010; (2) C. Kopp. The US Air Force Synthetic Fuels Program. Technical Report APA-TR-2008-0102. (2008)

Modular Design

MODULAR VS INTEGRAL

MODULAR

protect cargo upper half from weather connect to lower half vehicle minimize ail nose piece drag cargo hanging support cargo loads straps spring slot suspend trailer structure covers transfer wheels loads to road functional components elements

INTEGRAL

Modular Design

MODULAR VS INTEGRAL

MODULAR

Small Modular

OIL REFINERY (WORLD)

- 7 TW petroleum refining
- 700 plants
- \$500/kW capex

AUTO ENGINES (U.S.)

- 1.3 TW motive power
- 250 million engines
- \$50/kW capex

Small Modular

GAS TURBINES (U.S.)

- 0.2 TW electricity
- 5000 gas turbine generators
- \$1000/kW capex

AUTO ENGINES (U.S.)

- 1.3 TW motive power
- 250 million engines
- \$50/kW capex

Small Modular

STEEL PRODUCTION

Integrated Mills

- blast furnace
- capacity > 2.0 million ton/y

Mini-Mills

- electric arc furnace
- capacity < 0.5 million ton/y

Why now?

Why now?

ENABLING TECHNOLOGIES

- Additive Manufacturing process intensification
- Machine Learning automation
- Global Communications remote control

Example overcoming scale-up

1. Residence Time

fundamental limit = gravity e.g. solution = centrifugal force

2. Adiabatic Operation

fundamental limit = surface/volume e.g. solution = thermal integration

additive manufacturing enables novel reactors designs previously thought impossible/impractical

1200°C

What will be the impact?

Democratization through Innovation

Thank You

Dane A. Boysen dane.boysen@gmail.com