Data-Driven Dynamic Robust Resource Allocation for Efficient Transportation

Fei Miao

Postdoc, Electrical and Systems Engineering University of Pennsylvania

General Robotics, Automation, Sensing & Perception Lab

Cyber-Physical Systems

Tight integration of communication and computation systems with control of physical world

Internet of Things

Smart Cities

Challenges of CPS

Data-Driven Control, Optimization of CPS

Intelligent transportation systems: integration research challenges unsolved

Growing complexity and dynamics: scale, uncertainty, heterogeneous...

Domain: Transportation Systems

Revenue of US taxi services increases

Smart Parking

Self-driving car

State of the Art – The Dark Side...

Cruising Mileage

Idle: 300 million miles/year

Previous Work

- Urban traffic, demand modeling
 - Spatial and temporal patterns in speed prediction: [P. Jaillet et al., 2014]
 - Infer traffic condition based on taxi trip dataset: [Work et al., 2015]
- Coordination and resource allocation in smart transportation
 - Smart parking: [Geng and Cassandras, 2013]
 - Bike redistribution and incentives in sharing:[Morari et.al, 2014]
 - Mobility-on-demand systems: autonomous vehicles/robotics
 Minimize re-balancing number; with future demand : [Pavone et.al, 2014, 2015]
 Dynamic on-demand ride-sharing [Frazzoli, et al., 2016]
 Evaluation metric: number of vehicles needed; simulated waiting time

Novelty of my work

Brings data-driven optimization to system-wide efficient transportation

No system-level optimal, proactive resource allocation

Data \rightarrow Predicted demand \rightarrow Improved system performance?

On demand ridesharing service

- Greedy, increase human satisfaction myopically
- Optimal vehicle allocating with accurate, known demand distributions

Problem and Goal

Storage/Dispatch Center

Challenges: scale, uncertainty Conflict of interests Limited resource Customers: reach destination soon System optimal: minimum idle

System-level balanced supply-demand ratio (fair service) with least total idle distance

Hierarchical

Local controller: heuristic, greedy, matching, etc.

Large-scale dynamic decision, receding horizon control Demand predicted from historical and real-time sensing data

Uncertain demand: computationally tractable, probabilistic cost guarantee1.Robust optimization for the worst-case resource allocation cost2.Distributionally robust optimization for the expected cost

Large-scale dynamic decision, receding horizon control Demand predicted from historical and real-time sensing data

- Reduce idle mileage of ride-sharing service
- Considering both current and predicted future demand

Spatial-temporal data \rightarrow demand, mobility e.g. Poisson, vector time series

Spatial Urban Regions

Temporal Hourly Windows

Dynamically optimize: time t, consider dispatch costs of (t, ..., t+T), execute decision for t 1.Update sensing data, demand prediction 2. System-level: balanced supply towards demand with minimum total idle distance 3.Send decisions to vehicles, local dispatcher t = t+1

Objective #1: Fair Service → Balanced Supply

• Goal: Fair service, similar average waiting time Predicted demand – r_i^k Supply – original number of vacant vehicles before dis

Supply —original number of vacant vehicles before dispatch (GPS): L_i^k Decision variables $X_{ij}^k \ge 0$: number of vacant vehicles from region i to j

Local supply/demand ratio close to global level: penalty difference

Objective #2: Minimum Cost: Total Idle Distance

• The distance between region i and region j at time k: W_{ij}^k

Decision variables $X_{ij}^k \ge 0$: number of vacant vehicles from region i to j

Total idle distance to meet demand

System-Level Optimal Vehicle Dispatch

Computational complexity: polynomial of variable number (Tn²) Spatial-temporal granularity

Experiment: RHC dispatch with Real-Time information

- System-level vehicle balancing and local shortest path dispatcher
- Average demand, GPS vehicle locations
 Average idle distance 42%

Experiment: Dispatch with Real-Time Information

Uncertain demand: computationally tractable, probabilistic cost guarantee1.Robust optimization for the worst-case resource allocation cost2.Distributionally robust optimization for the expected cost

Data to Uncertain Demand or Demand Distributions

Spatial-temporal data

- Partition city map, cluster dataset
- Trip/trajectory \rightarrow Aggregated demand

 $\hat{r}_{k+1} = f_r(I_{[k-l,k]})$ $r_{k+1} = \hat{r}_{k+1} + \delta_{k+1}.$

Vector time series Poisson distribution

- Bootstrap (repeated experiments) •
- Confidence region of H_0 : mean, • covariance, probability distribution
- Closed and convex uncertainty sets •

Uncertain Demand: Computationally Tractable Approximation

- Predicted demand -a closed and convex set $r_c = (r^1, r^2, \dots, r^{\tau}) \in \Delta \in \mathbb{R}^{\tau n}$ (demand at time k: r^k)
- Decision variables $X_{ij}^k \ge 0$: number of vacant taxis from region i to j $S_i^k = f(X^{1:k})$ supply at region i time k, linear of previous decisions
- Objective not computationally intractable under uncertain demand

$$J_E = \sum_{k=1}^{\tau} \sum_{i=1}^{n} \left| \frac{S_i^k}{r_i^k} - \frac{\sum_{j=1}^{n} S_j^k}{\sum_{j=1}^{n} r_j^k} \right|$$

Uncertain Demand: Computationally Tractable Approximation

- Predicted demand -a closed and convex set $r_c = (r^1, r^2, \dots, r^{\tau}) \in \Delta \in \mathbb{R}^{\tau n}$ (demand at time k: r^k)
- Decision variables $X_{ij}^k \ge 0$: number of vacant vehicles from region i to j $S_i^k = f(X^{1:k})$ supply at region i time k, linear of previous decisions

*Theorem: computationally tractable approximation (concave of demand) *Fei Miao et. al, CDC, 2015; Fei Miao et. al, under revision, IEEE TCST 2016

Probabilistic Cost Guarantee for Worst-Case by Robust Solutions

• Predicted demand —a closed and convex set

$$r_c = (r^1, r^2, \dots, r^ au) \in \Delta \in \mathbb{R}^{ au n}$$
 (demand at time k: r^k)

Probabilistic guaranteeRobust optimization problem
$$\min_{X^{1:\tau}}$$
 $J(X^{1:\tau}, r_c)$ $\min_{X^{1:\tau}}$ $\max_{r_c \sim \Delta}$ $J(X^{1:\tau}, r_c),$ s.t. $P_{r_c \sim \mathbb{P}^*(r_c)}(f(X^{1:\tau}, r_c) \leq 0) \geq 1 - \epsilon.$ s.t. $f(X^{1:\tau}, r_c) \leq 0,$

*Theorems: robust optimization \rightarrow Equivalent convex optimization 1. Approximated objective: concave of uncertainties, convex of variables 2. Closed and convex uncertainty set (related to ε , first/second order) *Fei Miao et. al, CDC, 2015; Fei Miao et. al, under revision, IEEE TCST 2016

Minimize Expected Cost: Distributionally Robust Optimization (DRO)

• **Motivation:** Trade-off between the expected and the worst-case costs

• Formulation

Demand: $r_c = (r^1, r^2, \dots, r^{\tau}) \in \mathbb{R}^{\tau n}$, $r_c \sim F^*$, $F^* \in \mathcal{F}$ Resource allocation decision (spatial-temporal): $X^{1:\tau} = \{X^1, X^2, \dots, X^{\tau}\}$

*Theorem: DRO → Equivalent convex optimization

1.Approximated objective: concave of uncertainties, convex of variables 2.Closed and convex set of probability distributions (first/second order) *Fei Miao et. al, accepted, CPSWeek ICCPS 2017.

Applications of Data-Driven DRO Resource Allocation

 $S_i^k = f(X^{1:k})$ supply at region i time k, linear of previous decisions

Resource allocation under demand uncertainties

- Autonomous vehicle balancing for mobility-on-demand system
- Bicycle balancing: supply-demand ratio at each station is in a range
- Hierarchical carpooling framework: global balance, local carpool
- Real-time demand response with limited resource

Evaluations: Robust VS Non-Robust Solutions

Collection Period	4 years	
Data Size	100 GB	
Trip number	700 million	

Cross-validation

Second-order-cone uncertainties Probabilistic guarantee 1-ε=0.75 The average demand supply ratio error reduced by 31.7%

The average total idle distance Robust VS non-robust: ↓10.13%

Evaluation: Average Costs of (distributionally) Robust Solutions

SOC: second-order-cone uncertainty set Box: range of demand at each region Compared with non-robust (NR) solutions (100GB NYC taxi data) The average total idle driving distance is reduced by 10.05%

Dynamic Region Partition with DRO to Reduce Cost

Region Division	Grid Idle Mille	Quad-Tree Idle Mile	Change Rate
t=1 hour	$7.63 imes 10^4$	$6.62 imes 10^4$	13.1%
T=30 minutes	6.84×10^4	5.47×10^4	20.0%

- [Quad-tree region partition, uncertainty set of demand probability distributions, distributionally robust vehicle balancing] VS [static grid, non-robust model]
- → total idle distance 60 million miles, 8 million dollars gas consumption/year
- Compared with total idle distance of original data: \$55%

Summary of Contributions in Data-Driven CPS

Future work of CPS Safety and Security

Challenges: Safety, Security and Resilience

- With integration of communication, computation and control, cyber attacks can cause disasters in the physical world
- Knowledge of physical system dynamics helpful for security, resilience

CPS Security: Coding for Stealthy Data Injection Attacks Detection

Problem: Stealthy Data Injection Attacks

-Attacker is smarter with the system model knowledge: inject data to communication channel, drive system to unstable state and pass detectors.

-Communication cost for encrypted messages is too large

• Goal: A low cost technique to detect stealthy data injection attacks

Coding Schemes for Stealthy Data Injection Attacks Detection

Low cost: no extra bytes to communicate after coding ***Research Contributions**

-Analyze sufficient conditions of feasible, low cost coding -Design an algorithm to calculate a feasible Σ in real-time -Time-varying coding when the attacker can estimate Σ

*Fei Miao et.al, TCNS 2016. (funded by DARPA)

Dynamic Stochastic Game for Resilient Systems

• **Problem:** When an attack happens? What type of attack? Not known! Higher attack detection rate, higher investment cost in security in general

***Contributions:** dynamic stochastic game for an optimal switching policy between subsystems to balance security overhead and control cost

*Fei Miao et.al, CDC 2013,2014; journal version submitted to Automatica (funded by DARPA)

- Agenda: safety, efficiency, security for CPSs with focus on smart cities, autonomous transportation systems
- Contributions: data-driven CPSs, CPSs/Smart Cities security

Future work

-Hierarchical decision making based on heterogeneous data information

-Design incentive mechanisms (e.g., dynamic pricing) of users and suppliers for social optimal behavior

-Safety assurance of coordinated control of connected autonomous vehicles

-Security and resiliency of smart cities infrastructure with physical dynamics knowledge, distributed sensor networks

