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Cyber-Physical Systems

Tight integration of communication and computation
systems with control of physical world
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A Growing Field : CPS PGI]II
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The White House unveils new USS$160 million
Smart Cities Initiative
17th September 2015 Tom Teodorczuk
= $35 million for Smart Cities Grants by NSF
®= $10 million for CPS Program in 2016

= $70 million for Transportation, Energy, and more, by
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Smart Cities
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Data-Driven Control, Optimization of CPS

Minimize cost or

Data to information Maim p
Machine learning aximize proti

Statistical method Optimization

BN

Information to Action
Control

Intelligent transportation systems: integration research challenges unsolved ‘

Growing complexity and dynamics: scale, uncertainty, heterogeneous... ‘
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Domain: Transportation Systems

2009 2010 2011 2012 2013 2014

Stroet Lighting
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when the sreet is cctually used

Smart Parking Self-driving car
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State of the Art —

Idle: 300 million miles/year

Cruising Mileage
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 Urban traffic, demand modeling
— Spatial and temporal patterns in speed prediction: [P. Jaillet et al., 2014]
— Infer traffic condition based on taxi trip dataset: [Work et al., 2015]

« Coordination and resource allocation in smart transportation
— Smart parking: [Geng and Cassandras, 2013]
— Bike redistribution and incentives in sharing:[Morari et.al, 2014]
— Mobility-on-demand systems: autonomous vehicles/robotics
Minimize re-balancing number; with future demand : [Pavone et.al, 2014, 2015]
Dynamic on-demand ride-sharing [Frazzoli, et al., 20106]
Evaluation metric: number of vehicles needed; simulated waiting time

Novelty of my work
Brings data-driven optimization to system-wide efficient transportation
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No system-level optimal, proactive resource allocation

Data—>Predicted demand - Improved system performance?

On demand ridesharing service

» Greedy, increase human satisfaction myopically

Average Trips per Car
Jan-2012 -> August 2014
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» Optimal vehicle allocating with accurate, known demand distributions

Fei Miao
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Vehicle  Challenges: scale, uncertainty
Mobility  “conflict of interests

Limited resource

Customers: reach destination soon
System optimal: minimum idle

redicted
Demand

pal-Time

g
Pickup & Delive o
Occupancy

status

System-level balanced supply-demand ratio
(fair service) with least total idle distance

Hierarchical

Local controller: heuristic, greedy, matching, etc.
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Contributions Outline: Data-Driven Control, Optimization of CPS

Large-scale dynamic decision, receding horizon control
Demand predicted from historical and real-time sensing data

Uncertain demand: computationally tractable, probabilistic cost guarantee
1.Robust optimization for the worst-case resource allocation cost
2.Distributionally robust optimization for the expected cost

Fei Miao — 13



Large-scale dynamic decision, receding horizon control

| Demand predicted from historical and real-time sensing data

* Reduce idle mileage of ride-sharing service
» Considering both current and predicted future demand

Fei Miao
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Receding Horizon Control Hierarchical Vehicle Dispatch

Spatial
Spatial-temporal data = demand, mobility j Urban Regions
e.g. Poisson, vector time series Temporal
Hourly Windows
L }
/Dynamically optimize: time t, consider dispatch\ \
costs of (t,..., t+T1), execute decision for t }
1.Update sensing data, demand prediction J ;
2. System-level: balanced supply towards /f
demand with minimum total idle distance =
v\
3.Send decisions to vehicles, local dispatcher i A
\t = {+1 -/
n regions, optimization \
One region, local dispatcher
Fei Miao 15




Objective #1: Fair Service = Balanced Supply

» Goal: Fair service, similar average waiting time

Predicted demand — Tf

Supply —original number of vacant vehicles before dispatch (GPS): LX
Decision variables ij = 0: number of vacant vehicles from region i to j

« Local supply/demand ratio close to global level: penalty difference

T
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l l

Local s/d ratio Global s/d ratio (city)
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Objective #2: Minimum Cost: Total Idle Distance

« The distance between region i and region j at time k: W,Llj

Decision variables X,,;"“j = 0: number of vacant vehicles from region i to j
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System-Level Optimal Vehicle Dispatch

|dle distance to meet demand | Balanced supply

t {

Jmin T =3 (Un(X8) + 4 Tp(XE )

;1)( 2 Xp+ Ly N

D)9l DRBCTIARY] =N M
k=1i=1 | j=1 T 3 r}f

j=1
st (LFHT = 1 x* — (x*1,)" + (LF)T)P*, State dynamics: trip
17x*k —(x*1,)T + (L*)T > 0, Supply positive

X5Wh <m*X, | Sparsity constraint (distance limited)
X5 >0

(1)

Computational complexity: polynomial of variable number (Tn?)

Spatial-temporal granularity
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|dle distance comparison
+Dispatch with RT information -
O Dispatch without RT information
—No dispatch

600

480

360

240

120

2 4 6 8 10 12 14 16 %8 20 22 24
Time: Hour

Average total idle distance: mile

@)

Collection Period 28 days
Number of Taxis 500

GPS Record 1,000,000
Number

* Average demand, GPS vehicle locations
Average idle distance § 42%

« System-level vehicle balancing and local shortest path dispatcher

Fei Miao
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Experiment: Dispatch with Real-Time Information

Supply demand ratio under different conditions

2.0 [ [ [ v I I I I

—Global supply demand ratio
1.7+ Dispatch without RT information T+
1 4)ﬁrDispatch with RT information + v |

" vNo dispatch + +

1.1 * -

+ + sk
08% T * f
0.5 M + v oy ‘\Y v # | \‘( | Collection Perlf)d 28 days

12 3 6 7R 9 1|([))11 121314 N5 16 | Number of Taxis | 500

n
© Record Number 1,000,000

« System-level vehicle balancing Large error caused by
and local shortest path dispatcher prediction error

* Average demand, GPS vehicle locations
Average supply-demand ratio error* 45%

Fei Miao - 20 ]



Uncertain demand: computationally tractable, probabilistic cost guarantee

1.Robust optimization for the worst-case resource allocation cost
2.Distributionally robust optimization for the expected cost

L

Fei Miao

21




Spatial-temporal data
 Partition city map, cluster dataset
 Trip/trajectory— Aggregated demand

rea1 = Froon 4+ 0pp.  oISson distribution

» Bootstrap (repeated experiments)

« Confidence region of Hy: mean,  wum——
covariance, probability distribution

» Closed and convex uncertainty sets

Fei Miao
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Uncertain Demand: Computationally Tractable Approximation

 Predicted demand —a closed and convex set
re=(rtr3 . . r") e AER™ (demand at time k: r¥)

» Decision variables ij > 0: number of vacant taxis from region i to |
Sf = f(Xlzk) supply at region i time k, linear of previous decisions

» Objective not computationally intractable under uncertain demand
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Uncertain Demand: Computationally Tractable Approximation

 Predicted demand —a closed and convex set
re=(rt,r*,...;r") € A€ R™ (demand at time k: rk)

* Decision variables ij = 0: number of vacant vehicles from region i to |
SF = f(X"*) supply at region i time k, linear of previous decisions

*Theorem: computationally tractable approximation (concave of demand)
*Fei Miao et. al, CDC, 2015; Fei Miao et. al, under revision, IEEE TCST 2016
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Probabilistic Cost Guarantee for Worst-Case by Robust Solutions

 Predicted demand —a closed and convex set

re=(rtr?,...,;r") € A E€R™ (demand at time k: )
Probabilistic guarantee Robust optimization problem
. T . 1:7
min. J(XT ) pin) max | J(X™, 7o),
St P pr(ry (F(XTT,1) <0) =21 —e st f(XYT,r.) <0,

*Theorems: robust optimization - Equivalent convex optimization
1. Approximated objective: concave of uncertainties, convex of variables

2. Closed and convex uncertainty set (related to g, first/second order)
*Fei Miao et. al, CDC, 2015; Fei Miao et. al, under revision, IEEE TCST 2016
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Minimize Expected Cost: Distributionally Robust Optimization (DRO)

* Motivation: Trade-off between the expected and the worst-case costs

 Formulation
Demand: 7. = (rt,r?,...,r") e R™, r.~ F*, F*e&F
Resource allocation decision (spatial-temporal). X7 = {X! X2 . . X7}

Stochastic programming Distributionally robust optimization
min. [max E [J(X"7, r.)]

min. E, p- [J(XLT,?”C)] e Xt | FEF

Xl:T .
st. XUTeD, s.t. XY enD,.

*Theorem: DRO - Equivalent convex optimization
1.Approximated objective: concave of uncertainties, convex of variables

2.Closed and convex set of probability distributions (first/second order)
*Fei Miao et. al, accepted, CPSWeek ICCPS 2017.
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Applications of Data-Driven DRO Resource Allocation

Allocation cost | Metric of service quality (d/s ratio related)

1 1
Z(JD(Xk)ﬁ-ﬁZ(;é)a) (3)

k=1 1=1
s.t. XET SUT e,

min. max K
Xl:'T,Sl:'TFef

Sk = f(X1*) supply at region i time k, linear of previous decisions

Resource allocation under demand uncertainties

Autonomous vehicle balancing for mobility-on-demand system
Bicycle balancing: supply-demand ratio at each station is in a range
Hierarchical carpooling framework: global balance, local carpool
Real-time demand response with limited resource
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Evaluations: Robust VS Non-Robust Solutions

60%% Demand supply ratio error comparison Collection Period | 4 years
° {Robust solutions Data Size 100 GB
o} BENon-robust solutions
& 40% 7 Trip number 700 million
C
o
S Cross-validation
- Second-order-cone uncertainties
% 60 120 180 oa0 Probabilistic guarantee 1-€=0.75
Demand supply ratio error range The average demand supply
o _ ratio error reduced by 31.7%
Total idle distance comparison
75% ‘ ‘ :
: {Robust solutions
BNon-robust solutions
[¢))
350%
C
$25% | 1 The average total idle distance
| g Robust VS non-robust: ¥10.13%

87 08_ 09 1 14 12 13
Total idle distance range x 10°
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Evaluation: Average Costs of (distributionally) Robust Solutions

4 Average cost comparison of DRO and RO

x 10

10 +SOC
2 > Box
o9 NR
0 ~DRO
9 87
o
Z

7
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SOC: second-order-cone uncertainty set

Box: range of demand at each region

Compared with non-robust (NR) solutions (100GB NYC taxi data)
The average total idle driving distance is reduced by 10.05%

Fei Miao
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Dynamic Region Partition with DRO to Reduce Cost

£ :O: .o . | '§ g © ° - '0
§ ) 7' -' : ’ | ° % ‘ ‘ .‘.v | ©
5 -75..37 . -7.3.29 ; 7o . '7.3‘29
Longitude Longitude
Region Division Grid Idle Mile | Quad-Tree Idle Mile Change Rate
t=1 hour 7.63 x 10% 6.62 x 104 13.1%
T=30 minutes 6.84 x 10* 5.47 x 10* 20.0%

[Quad-tree region partition, uncertainty set of demand probability distributions,
distributionally robust vehicle balancing] VS [static grid, non-robust model]
- total idle distance] 60 million miles, 8 million dollars gas consumption/year
« Compared with total idle distance of original data:;55%

Fei Miao
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Summary of Contributions in Data-Driven CPS
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 Learn demand from data; real-time,
hierarchical decision-making

» Transportation efficiency
Fei Miao et.al, ICCPS15 best paper finalist
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Computationally tractable, probabilistic
guarantee under model uncertainties

Fei Miao et.al, ICCPS17;CDC15,TCST16

Challenges with growing complexity and dynamics: scale, uncertainty

Fei Miao
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Smart & — Application Sectors
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Challenges: Safety, Security and Resilience

With integration of communication, computation and control, cyber
attacks can cause disasters in the physical world

Knowledge of physical system dynamics helpful for security, resilience

NEWS TecHNoOLOGY

o of the most commonly used /%
7 o Internet of Things devices

Car hackers use laptop to control standard PR o ooty vulnefabllmes

By Zoe Kleinman
Tochnology reporter, BBC News

~.500 0|
billion
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will be hooked
to the Internet
by 2025 1
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* Problem: Stealthy Data Injection Attacks

-Attacker is smarter with the system model knowledge: inject data to
communication channel, drive system to unstable state and pass detectors.

-Communication cost for encrypted messages is too large

» Goal: A low cost technique to detect stealthy data injection attacks

Attacker Z é‘
Yo a ¢
B LTI f:?,:-ge Vi S 4
| E Xes1=AX +Bu+w, _ 4‘ Z
g : Vie=CX,+V, : D ' 0 p Z <
f' ‘
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Coding Schemes for Stealthy Data Injection Attacks Detection

YE — Cfck + Vg Attacker
(5] o [ — Yk
__ Encoder Y! = 5(Crx + ) + controller
Vi = X(Crp + vg) [E § :y_ng(gge: )‘ - vk)i:» estimator
| T =2V Y, detector
1 5] N
Estimator decode

Ykl = Z(ka + Uk) + y[% ——), gk — Z_lyk’ = Yk + Z_lyg

Low cost: no extra bytes to communicate after coding
*Research Contributions

-Analyze sufficient conditions of feasible, low cost coding
-Design an algorithm to calculate a feasible Z in real-time
-Time-varying coding when the attacker can estimate 2

*Fei Miao et.al, TCNS 2016. (funded by DARPA)
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Dynamic Stochastic Game for Resilient Systems

CANBS <Ep| t[z—\—“hcm Bus -
an / .
Actuator| | L) Yk e e
Attack U’y :
—-Icontroller 1|— estimator 1 detector 1 ,
- - : x| Sensor
TTmm e s /- {1 | Attack
: __. ————ffetector N}«
| estimator N,I :
| |
I |

______________________________

* Problem: When an attack happens? What type of attack? Not known!
Higher attack detection rate, higher investment cost in security in general

*Contributions: dynamic stochastic game for an optimal switching policy
between subsystems to balance security overhead and control cost

*Fei Miao et.al, CDC 2013,2014; journal version submitted to Automatica (funded by DARPA)
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« Agenda: safety, efficiency, security

for CPSs with focus on smart cities, 12:30 am
autonomous transportation systems P
& /\",
t Y
: v
S o
hY .~

« Contributions: data-driven CPSs, .

CPSs/Smart Cities security -—

 Future work

-Hierarchical decision making based on
heterogeneous data information

-Design incentive mechanisms (e.g.,
dynamic pricing) of users and suppliers
for social optimal behavior

FO Pickups
-Safety assurance of coordinated control

of connected autonomous vehicles ® Dropofls

-Security and resiliency of smart cities
infrastructure with physical dynamics -
knowledge, distributed sensor networks New York




