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Internet of Things 
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A Growing Field : CPS 
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Smart Cities 
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Data-Driven Control, Optimization of CPS 

Growing complexity and dynamics: scale, uncertainty, heterogeneous… 
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Data to information 
Machine learning 
Statistical method 
	

Minimize cost or 
Maximize profit 
Optimization 

Information to Action 
Control 

Application 
Transportation systems 
Energy networks 
Manufacturing 
….... 

Demand response of smart grid 

Energy dispatch of smart building 

Intelligent transportation systems: integration research challenges unsolved 



Domain: Transportation Systems 
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State of the Art – The Dark Side… 

=20 ×

Cruising Mileage

Idle: 300 million miles/year

New York City
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Previous Work 

•  Urban traffic, demand modeling 
–  Spatial and temporal patterns in speed prediction: [P. Jaillet et al., 2014] 
–  Infer traffic condition based on taxi trip dataset: [Work et al., 2015]  

•  Coordination and resource allocation in smart transportation 
–  Smart parking: [Geng and Cassandras, 2013] 
–  Bike redistribution and incentives in sharing:[Morari et.al, 2014] 
–  Mobility-on-demand systems: autonomous vehicles/robotics 
   Minimize re-balancing number; with future demand : [Pavone et.al, 2014, 2015] 
   Dynamic on-demand ride-sharing  [Frazzoli, et al., 2016] 
   Evaluation metric: number of vehicles needed; simulated waiting time 
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Novelty of my work 
Brings data-driven optimization to system-wide efficient transportation	



Motivation: Efficient Transportation 

On demand ridesharing service 
•  Greedy, increase human satisfaction myopically  

•  Optimal vehicle allocating with accurate, known demand distributions 
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No system-level optimal, proactive resource allocation   
 
DataàPredicted demand àImproved system performance? 

High Demand 

Low Supply 



Problem and Goal 

Real-Time  
Control 

Pickup & Delivery 

Vehicle  
Mobility 

Predicted  
Demand 

Storage/Dispatch Center 

Cellular  
Ratio 

GPS 

Occupancy  
status 

12	Fei	Miao	

System-level balanced supply-demand ratio 
(fair service) with least total idle distance 

Local controller: heuristic, greedy, matching, etc. 
Hierarchical 

Challenges: scale, uncertainty 
Conflict of interests 
Limited resource  
Customers: reach destination soon 
System optimal: minimum idle 



Contributions Outline: Data-Driven Control, Optimization of CPS 

Large-scale dynamic decision, receding horizon control 
Demand predicted from historical and real-time sensing data 	

Uncertain demand: computationally tractable, probabilistic cost guarantee 
1.Robust optimization for the worst-case resource allocation cost 
2.Distributionally robust optimization for the expected cost 
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Contributions Outline: Data-Driven Control, Optimization 

•  Reduce idle mileage of ride-sharing service 
•  Considering both current and predicted future demand 
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Large-scale dynamic decision, receding horizon control 
Demand predicted from historical and real-time sensing data 	



Receding Horizon Control Hierarchical Vehicle Dispatch 

Spatial-temporal data à demand, mobility 
e.g. Poisson, vector time series 
 

Dynamically optimize: time t, consider dispatch 
costs of (t,…, t+τ), execute decision for t  
1.Update sensing data, demand prediction 
2. System-level: balanced supply towards 
demand with minimum total idle distance 
3.Send decisions to vehicles, local dispatcher 
 t = t+1 
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Spatial 
Urban Regions   

Temporal 
Hourly Windows 

 

One region, local dispatcher  

n regions, optimization 



Objective #1: Fair Service à Balanced Supply  
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rkiPredicted demand� 

 Decision variables               : number of vacant vehicles from region i to j Xk
ij > 0

Supply �original number of vacant vehicles before dispatch (GPS): Li
k 

•  Goal: Fair service, similar average waiting time  

•  Local supply/demand ratio close to global level: penalty difference 
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Objective #2: Minimum Cost: Total Idle Distance  

•  Total idle distance to meet demand  

4/6/15, 3:32 PMCable Car Museum, Mason Street, San Francisco, CA to Montgomery St. - Google Maps

Page 1 of 2https://www.google.com/maps/dir/Cable+Car+Museum,+Mason+Street,+…ff7491:0xb04336aed684aa9f!2m2!1d-122.401407!2d37.789256!3e0!5i2

Directions from Cable Car Museum, Mason Street, San Francisco, CA to Montgomery St.

Drive 1.0 mile, 5 min

Cable Car Museum, Mason Street, San Francisco, CA

1. Head south on Mason St toward Washington St

2. Turn left at the 1st cross street onto Washington St

3. Turn right onto Powell St

4. Turn left onto Clay St

5. Turn right onto Montgomery St

6. Turn left onto Market St

Montgomery St.

108 ft

482 ft

328 ft

0.4 mi

0.4 mi

223 ft

Initial position 

Dispatched 
position 
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•  The distance between region i and region j at time k: 

JD =
⌧P

k=1

nP
i=1

nP
j=1

Xk
ijW

k
ij

W k
ij
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L4 

Decision variables                : number of vacant vehicles from region i to j Xk
ij > 0



System-Level Optimal Vehicle Dispatch 

(1) 
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Balanced supply Idle distance to meet demand 

Supply positive 

State dynamics: trip 

Sparsity constraint (distance limited) 

Computational complexity: polynomial of variable number (τn2) 
Spatial-temporal granularity 

min.
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Experiment: RHC dispatch with Real-Time information 
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Dispatch with RT information
Dispatch without RT information
No dispatch
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•  System-level vehicle balancing and local shortest path dispatcher 
•  Average demand, GPS vehicle locations 
Average idle distance    42% 

Collection Period 28 days 

Number of Taxis 500 

GPS Record 
Number 

1,000,000 



Experiment: Dispatch with Real-Time Information 
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Global supply demand ratio
Dispatch without RT information
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Collection Period 28 days 

Number of Taxis 500 

Record Number 1,000,000 

•  System-level vehicle balancing  
and local shortest path dispatcher 
•  Average demand, GPS vehicle locations 
Average supply-demand ratio error    45% 

Large error caused by 
prediction error  



Contributions Outline: Data-Driven Control, Optimization of CPS 

Uncertain demand: computationally tractable, probabilistic cost guarantee 
1.Robust optimization for the worst-case resource allocation cost 
2.Distributionally robust optimization for the expected cost 
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•  Bootstrap (repeated experiments) 
•  Confidence region of H0:	mean, 

covariance, probability distribution   
•  Closed and convex uncertainty sets 
 

Spatial-temporal data 
•  Partition city map, cluster dataset  
•  Trip/trajectory→ Aggregated demand 

Data to Uncertain Demand or Demand Distributions 

All data
Weekday

  *H. David and H. Nagaraja. Order statistics. Wiley Online Library, 1970. 
  �D. Bertsimas et al, Data-driven robust optimization. Operations Research 2015. 

Box: 

Second-order-cone (SOC): 

Distribution set 

r̂k+1 = fr(I[k�l,k]), rk+1 = r̂k+1 + �k+1.

r̂k+1 = fr(I[k�l,k]), rk+1 = r̂k+1 + �k+1.

Vector time series 
Poisson distribution 
 



Uncertain Demand: Computationally Tractable Approximation 
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•  Objective not computationally intractable under uncertain demand  

•  Predicted demand �a closed and convex set  
                                                                          (demand at time k: rk ) rc = (r1, r2, . . . , r⌧ ) 2 � 2 R⌧n
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Uncertain Demand: Computationally Tractable Approximation 
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*Theorem: computationally tractable approximation (concave of demand) 
 *Fei Miao et. al, CDC, 2015; Fei Miao et. al, under revision, IEEE TCST 2016     

•  Predicted demand �a closed and convex set  
                                                                          (demand at time k: rk ) 

                                                                           

rc = (r1, r2, . . . , r⌧ ) 2 � 2 R⌧n
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�

Probabilistic guarantee	

•  Predicted demand �a closed and convex set  
                                                                          (demand at time k: rk ) 

                                                                           

rc = (r1, r2, . . . , r⌧ ) 2 � 2 R⌧n

min.
X1:⌧

J(X1:⌧ , rc)

s.t. Prc⇠P⇤(rc)(f(X
1:⌧ , rc) 6 0) > 1� ✏.

min.

X1:⌧
max

rc⇠�
J(X1:⌧ , rc),

s.t. f(X1:⌧ , rc) 6 0,

Robust optimization problem 

Probabilistic Cost Guarantee for Worst-Case by Robust Solutions 

25	Fei	Miao	

•  Probabilistic guarantee for the dispatch cost 

	*Theorems: robust optimization à Equivalent convex optimization 
 1. Approximated objective: concave of uncertainties, convex of variables  
 2. Closed and convex uncertainty set (related to	ε,	first/second order) 
 *Fei Miao et. al, CDC, 2015; Fei Miao et. al, under revision, IEEE TCST 2016 



Minimize Expected Cost: Distributionally Robust Optimization (DRO) 

•  Motivation: Trade-off between the expected and the worst-case costs 

•  Formulation 
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X1:⌧ = {X1, X2, . . . X⌧}
rc ⇠ F ⇤, F ⇤ 2 FDemand:                                                    ,             

Resource allocation decision (spatial-temporal): 
rc = (r1, r2, . . . , r⌧ ) 2 R⌧n

Stochastic programming 
min.
X1:⌧

Erc⇠F⇤
⇥
J(X1:⌧ , rc)

⇤

s.t. X1:⌧ 2 Dc.

Distributionally robust optimization 
min.

X1:⌧
max

F2F
E
⇥
J(X1:⌧ , rc)

⇤

s.t. X1:⌧ 2 Dc.

*Theorem: DRO à Equivalent convex optimization 
1.Approximated objective: concave of uncertainties, convex of variables 
2.Closed and convex set of probability distributions (first/second order) 
*Fei Miao et. al, accepted, CPSWeek ICCPS 2017. 



Applications of Data-Driven DRO Resource Allocation 

27	Fei	Miao	

supply at region i time k, linear of previous decisions 

Resource allocation under demand uncertainties  
 
•  Autonomous vehicle balancing for mobility-on-demand system  
•  Bicycle balancing: supply-demand ratio at each station is in a range  
•  Hierarchical carpooling framework: global balance, local carpool 
•  Real-time demand response with limited resource 
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Evaluations: Robust VS Non-Robust Solutions  
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Robust solutions
Non−robust solutions

Fei	Miao	 28	

Cross-validation 
Second-order-cone uncertainties 
Probabilistic guarantee 1-ε=0.75 
The average demand supply 
ratio error reduced by 31.7% 

The average total idle distance 
Robust VS non-robust: ê10.13% 
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Robust solutions
Non−robust solutions

Collection Period 4 years 
Data Size 100 GB 
Trip number 700 million 



Evaluation: Average Costs of (distributionally) Robust Solutions 
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SOC: second-order-cone uncertainty set 
Box: range of demand at each region 
Compared with non-robust (NR) solutions (100GB NYC taxi data) 
The average total idle driving distance is reduced by 10.05% 



Dynamic Region Partition with DRO to Reduce Cost 
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•  [Quad-tree region partition, uncertainty set of demand probability distributions,  
distributionally robust vehicle balancing] VS [static grid, non-robust model] 

à  total idle distance  60 million miles, 8 million dollars gas consumption/year 
•  Compared with total idle distance of original data:   55% 

Region Division Grid Idle Mile Quad-Tree Idle Mile Change Rate 
t=1 hour 13.1% 

T=30 minutes 20.0% 

7.63⇥ 104 6.62⇥ 104

6.84⇥ 104 5.47⇥ 104



Summary of Contributions in Data-Driven CPS  

•  Learn demand from data; real-time, 
hierarchical decision-making 

•  Transportation efficiency 
Fei Miao et.al, ICCPS15 best paper finalist 
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Computationally tractable, probabilistic 
guarantee under model uncertainties 
 

Fei Miao et.al, ICCPS17;CDC15,TCST16 

Automo+ve	 Agriculture	

Civil	

Aeronau+cs	

Materials	

		Energy	

Manufacturing	

Smart	&	
Connected	
Communi+e

s	

CPS	Core	

Safety	

Verifica-on	

Privacy	

Human	
in	the	
Loop	

Control	

IoT	

Networking	Data	
Analy-c

s	

Design	Autonomy	

Medical	

Security	

Informa-on	
Management	

Real--me	
Systems	

Challenges with growing complexity and dynamics: scale, uncertainty 



Future work of CPS Safety and Security 
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Challenges: Safety, Security and Resilience 

•  With integration of communication, computation and control, cyber 
attacks can cause disasters in the physical world 

•  Knowledge of physical system dynamics helpful for security, resilience 

																											33	Fei	Miao	 Connected vehicles 



CPS Security: Coding for Stealthy Data Injection Attacks Detection  

•  Problem: Stealthy Data Injection Attacks 
-Attacker is smarter with the system model knowledge: inject data to 
communication channel, drive system to unstable state and pass detectors. 

-Communication cost for encrypted messages is too large 

•  Goal: A low cost technique to detect stealthy data injection attacks 
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Coding Schemes for Stealthy Data Injection Attacks Detection  

Low cost: no extra bytes to communicate after coding 
*Research Contributions 
-Analyze sufficient conditions of feasible, low cost coding 
-Design an algorithm to calculate a feasible Σ	in real-time 
-Time-varying coding when the attacker can estimate Σ 
 

 *Fei Miao et.al, TCNS 2016. (funded by DARPA) 

yk = Cxk + vk

Yk = ⌃(Cxk + vk)

Y

0
k = ⌃(Cxk + vk) + y

a
k

Estimator decode 
ỹ0k = ⌃�1Y 0

k = yk + ⌃�1yak
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Dynamic Stochastic Game for Resilient Systems 
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 Linear time invariant system 

Fei	Miao	

•  Problem: When an attack happens? What type of attack? Not known!  
Higher attack detection rate, higher investment cost in security in general 
 
*Contributions: dynamic stochastic game for an optimal switching policy 
between subsystems to balance security overhead and control cost 
 

*Fei Miao et.al, CDC 2013,2014; journal version submitted to Automatica (funded by DARPA)   



New York�
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•  Agenda: safety, efficiency, security 
   for CPSs with focus on smart cities,          
autonomous transportation systems 

•  Contributions: data-driven CPSs, 
CPSs/Smart Cities security 

•  Future work 
-Hierarchical decision making based on 
heterogeneous data information 

-Design incentive mechanisms (e.g., 
dynamic pricing) of users and suppliers 
for social optimal behavior 
-Safety assurance of coordinated control 
of connected autonomous vehicles  

-Security and resiliency of smart cities 
infrastructure with physical dynamics 
knowledge, distributed sensor networks 

  


