

Bistable and Adaptive Piezoelectric Circuitry for Impedance-Based Structural Health Monitoring

Jinki Kim Department of Mechanical Engineering University of Michigan

April 20 2017

Outline of the Presentation

- Background on Structural Health Monitoring
- Problem Statement and Research Goal
- Impedance Data Enrichment Concept
- Bifurcation-based Sensing Method
- Scholarly Contributions and Impacts
- Proposal for Future Plan

Background: Structural Health Monitoring

Background: Structural Health Monitoring

- **System Health Management:** Capabilities of a system that preserve the system's ability to function as intended
- Life-safety and economic impact

Determinseof

- Chaunddategieen of tagest ticton,
- Recentioning Geeful life
- engrationaluplan

Background: Structural Health Monitoring

Vibration-based methods (Farrar et al 2001; Carden and Fanning, 2004)

- Merit: Easy to implement, large sensing area
 Identification of damage location and severity
- Limitation: Low frequency / not sensitive to small damage

Wave propagation-based methods (Raghavan and Cesnik 2007)

- **Merit**: High frequency / incipient small damage detectable
- **Disadvantage**: Challenges in identifying the severity of damage

Piezoelectric impedance-based methods (Park et al 2003; Wang and Tang 2010)

- Utilize the <u>electromechanical coupling effect</u> of the piezoelectric transducer
- Simple implementation
- Damage location / severity identification
- High sensitivity to small damages

6

Background: Impedance-based Methods

Impedance data-based methods

- Frequency spectra analysis methods
 - Merit: straightforward implementation
 - Limitation: only detection

non-physical damage index

Background: Impedance-based Methods

Impedance data-based methods

- Frequency spectra analysis methods
 - Merit: straightforward implementation
 - Limitation: only detection
 non-physical damage index
 - Time-series analysis methods
 - Merit: real-time health monitoring
 - Limitation: only detection

phenomenological model

Park et al. 2010

Background: Impedance-based Methods

Impedance data-based methods

- Frequency spectra analysis methods
 - Merit: straightforward implementation
 - Limitation: only detection
 non-physical damage index
- Time-series analysis methods
 - Merit: real-time health monitoring
 - Limitation: only detection

phenomenological model

- Feature-based pattern recognition methods
 - Merit: identification of damage location/severity
 - Limitation: large training data required for all different damage cases

Impedance model-based methods

Background: Impedance-based Methods

Impedance data-based methods

Impedance model-based methods

- These methods are based on *physical model* → *inverse problem: identify* system parameters (damage) of model based on measurements
- Merit: Damage location/severity identification for new damage condition Sensor self-diagnosis,
 - Optimize sensor deployment strategy
- Various approaches
 - FEM-based model updating (Tseng, et.al. 2005)
 - Spectral Element Method (SEM)-based model updating (Ritdumrongkul, et. al. 2005)
 - Sensitivity-based inverse problem using SEM (Wang, Tang. 2010)
- Limitation: <u>Seriously underdetermined</u> inverse problem
 Little consideration on the <u>noise and uncertainty in modeling</u>

Background: Underdetermined inverse problem

model damage index $\mathbf{G} \times \delta \mathbf{d} = \delta \mathbf{Y}$ measurement

➔ Moore-Penrose pseudoinverse

 $\delta \tilde{\mathbf{d}} = \mathbf{G}^{-1} \delta \mathbf{Y}$

 $= (\mathbf{V}\mathbf{S}^{-1}\mathbf{U}^T)\delta\mathbf{Y}$ $\approx \sum_{i=1}^n \frac{\mathbf{u}_i^T \delta\mathbf{Y}}{\mathbf{s}_i} \mathbf{v}_i$ truncate the singular values

 $\mathbf{G} \times \delta \mathbf{d} = \delta \mathbf{Y} + \mathbf{e}$ $\delta \mathbf{d}^* = \mathbf{G}^{-1}(\delta \mathbf{Y} + \mathbf{e})$ $= \delta \mathbf{\tilde{d}} + \mathbf{G}^{-1}\mathbf{e}$ $\approx \delta \mathbf{\tilde{d}} + \sum_{i=1}^{n} \frac{\mathbf{u}_i^T \mathbf{e}}{(s_i)} \mathbf{v}_i$ very small singular values amplify the error term!

Error

Damage identification is extremely sensitive to small errors for underdetermined inverse problem.

Problem Statement and Research Goal

Problem Statement

- The inverse problem for damage identification is significantly underdetermined → Extremely sensitive to small errors such as environmental noise
- Accurate measurement of damage induced piezoelectric impedance variations, especially with noise

Research Goal

To overcome the limitations and develop a new method that can accurately and completely capture the damage features from piezoelectric impedance variations while still maintain the simplicity of the approach

Problem Statement and New Idea I

Problem Statement

- The inverse problem for damage identification is significantly underdetermined → Extremely sensitive to small errors such as environmental noise
- Accurate measurement of damage induced piezoelectric impedance variations, especially with noise

New Idea: Impedance Data Enrichment via Adaptive Piezoelectric Circuitry

Sensitivity-based Inverse Problem Formulation

Derive δd (location and severity of damage, e.g., stiffness reduction) based on δY (damage-induced piezoelectric impedance variation) measurements

Generalized force by piezoelectric transducer π

 $\mathbf{F} = M_p \mathbf{\Phi}_p^{\mathrm{T}}$

Generalized displacement of the structure $\mathbf{W} = \mathbf{S}^{-1}(\omega)\mathbf{F}$

Voltage generated by displacement

 $V_p = K_2 \mathbf{\Phi}_p \mathbf{W}$

Impedance measured by the voltage across R

Cannot be accurately predicted! First-order sensitivity equation $G \times \delta d = \delta Y$

- **G**: *m* x *N* sensitivity matrix
- $\delta Y : m \ge 1$ vector of impedance variation *measurements*
- δd : *N* x 1 vector of *damage index*

m << *N*

Underdetermined!

gain more information about the structural damage

New Idea: Impedance Data Enrichment via Adaptive Piezoelectric Circuitry

Tune the inductance to form a sequence, $L = [L_1, L_2, ..., L_n]$

Merit of the proposed idea: Original underdetermined inverse problem can be greatly improved!

Numerical Analysis: Damage Identification

Experimental Verification

17

	Elem.	Dimension
Beam structure (Al-2024)	61	627 x 7.21 x 3.175 mm
PZT (PSI-5A4E)	41 / 29	16.8 x 7.09 x 0.191 mm
Damage	25	Notch: 10.4 mm x 90 um → 8.3 % loss

7 Inductance tunings in 6 kHz – 10 kHz

Experimental Verification

Damage Identification Results

The concept of data enrichment for improving damage identification is experimentally verified.

Problem Statement and New Idea II

Problem Statement

- The sensitivity-based inverse problem is significantly underdetermined → Extremely sensitive to small errors such as environmental noise, uncertainty in modeling
- Accurate measurement of damage induced piezoelectric impedance variations, especially with noise

New Idea: Damage Identification Enhancement with Integrated Bistable and Adaptive piezoelectric Circuitry

Bifurcation-Based Sensing in MEMS

- Bifurcation: large qualitative response change (e.g., transition from low- to high-amplitude response, or highlow) due to crossing critical parameters of a nonlinear system
- Microscale (MEMS) mass detection using bifurcations recently studied (Zhang and Turner, 2005; Kumar, et al., 2011)
- Determination of mass accumulation shown to be less susceptible to *noise and damping* than direct frequency peak measurements.

Bifurcation-based mass sensor: piezoelectrically actuated microcantilever, Kumar et al 2011

New Idea: Bistable Circuitry for Bifurcation-Based Sensing for Macro-Structures

- Most structural systems to monitor for damage are not strongly nonlinear → Need additional means to introduce strong nonlinearity for bifurcation-based detection
- <u>New Idea</u>: *Bistable circuitry* integrated with host structure through piezoelectric transducer
 - The structural response (V_i from the piezo-transducer) is *input* for the bistable circuit, and can activate the circuit output voltage V_o bifurcations
 - <u>Negligible back-coupling</u> inhibits interaction between circuit responses and structural dynamics

Bistable Circuitry: Experimental Investigation

Saddle-node bifurcation

➔ two equilibria of a

dynamical system *collide* each other

- Saddle-node bifurcation with respect to input amplitude
 - Sudden transition from low orbit to high orbit oscillation when the input amplitude passes a threshold → onset of saddle-node bifurcation

Bistable circuit response in time

Bistable Circuitry: Experimental Investigation

- Bistable circuit response dependent upon excitation frequency and level
- Measured circuit FRF amplitude showing critical region of bifurcation activation with clear threshold

To detect damage-induced impedance variations -- Tune bistable sensitivity to target a specific structural mode

Measuring impedance variations from Bifurcation Activation

- Use host structural response before/after damage as input voltage for a bistable circuit
- A critical level of host structural response will trigger bifurcation

Measuring impedance variations from Bifurcation Activation

- Use host structural response before/after damage as input voltage for <u>an array of bistable circuit with various threshold levels</u>
- A critical level of host structural response will trigger bifurcation
 Provide robust measurements of impedance
 variation for damage ID

Non-stationary and stochastic influences on saddle-node bifurcation

 Damage-induced impedance variation measurement <u>by tracking</u> <u>the onset of bifurcation</u>

Sudden transition/escape to another stable state when the input amplitude passes a threshold → onset of saddle-node bifurcation

Noise, non-stationary effects influence the onset of bifurcation

Saddle-node bifurcation

Accurate assessment on the onset of saddle-node bifurcation is critical for sensing application

Non-stationary and stochastic influences on saddle-node bifurcation

Non-stationary influence

- Change input amplitude sweep rate (quasi-static – 2 V/sec)
- The onset of <u>bifurcation is</u> delayed

Non-stationary and stochastic influences on saddle-node bifurcation

Stochastic influence

 Additive Gaussian white noise (1 mV - 20 mV)
 Saddle-node bifurcation is extremely sensitive to

stochastic and non-stationary influences

45

Theoretical model of the bistable circuit

С

 $v_0 - v_D + 2\pi_{3I_S} SIIII$

 (ηV_T)

AC input voltage at 2.5 kHz

Numerical analysis can be reliably utilized for estimating the experimental results

Single-parameter stochastic normal form with non-stationary influence

Approximate the local dynamics near bifurcation point as piecewise-linear system

$$RC\dot{V_o} + aV_o + b = V_i + nW$$

 $\frac{\text{Stochastic normal form of non-smooth}}{\text{saddle-node bifurcation}} \text{ Gaussian white noise} \\ \dot{x} = \eta + |x| + \varepsilon \xi \quad \langle \xi(t), \xi(\tilde{t}) \rangle = 2\delta(t - \tilde{t}) \\ \text{bifurcation parameter} \text{ noise strength} \end{cases}$

Non-stationary influence: $\eta(t) = \eta_0 + r t$, $\eta_0 < 0$

parameter sweep rate

Change of variables
$$\tau = \eta r^{-1}$$

new time scale $z = x r^{-1}$

Sing Investigate the stochastic and non-stationary influences using single parameter, scaled noise α

Numerical verification of analytical escape probability distribution

- Analytical prediction of escape time T, where $z(T) \rightarrow \infty$
 - Fokker-Planck equation
 - Kramer's escape rate
- Numerical verification
 - <u>Monte-Carlo method</u>: solve stochastic differential equation of the bistable circuit via Euler-Maruyama approach

Noise level

 $\frac{\partial P(z,t)}{\partial t} = -\frac{\partial}{\partial z} \left[(t+z^2)P \right] + \alpha^2 \frac{\partial^2 P}{\partial x^2}$

→ 2.5, 5, 10, 20 40 mV rms

 $P(T) = W(T) \exp\left(-\int_{t_0}^{T} W(t)dt\right) \quad W(t) = \frac{\sqrt{-t}}{\pi} \exp\left(-\frac{4(-t)^{3/2}}{3\alpha^2}\right)$

- Input amplitude sweep rate
 - ➔ 10, 20, 40, 60, 80, 200 mV/sec

Numerical verification of analytical escape probability distribution

- Analytical prediction of escape time T, where $z(T) \rightarrow \infty$
 - Fokker-Planck equation

Analytical prediction

Monte-Carlo simulation

- Kramer's escape rate
- Numerical verification

× 10⁵

mean T

-10

-15

 <u>Monte-Carlo method</u>: solve stochastic differential equation of the bistable circuit via Euler-Maruyama approach

 $\frac{\partial P(z,t)}{\partial t} = -\frac{\partial}{\partial z} \left[(t+z^2)P \right] + \alpha^2 \frac{\partial^2 P}{\partial x^2}$

Noise level: 10 mV rms

Sweep rate: 40 mV/sec

Analytical prediction on the onset of saddle-node bifurcation is verified for various non-stationary and stochastic conditions

weak noise

slow sweep

onset of saddle-node bifurcation

 $P(T) = W(T) \exp\left(-\int_{t_0}^{T} W(t) dt\right) \quad W(t) = \frac{\sqrt{-t}}{\pi} \exp\left(-\frac{4(-t)^{3/2}}{3\alpha^2}\right)$

Escape probability distribution and bifurcation-based sensing resolution

• Case: noise level (10 mV), sweep rate (40 mV/s)

Α

Theoretical framework enables to determine the enhanced minimum resolution of bifurcationbased sensing approach

Damage Identification with Integrated Bistable and Adaptive Piezoelectric Circuitry

Damages: 0.1%, 0.15% element stiffness reduction @ 13th, 24th element

Data enrichment

Adaptive piezoelectric circuit with 7 different inductances

Impedance measurement

Bistable circuitry integrated with piezoelectric circuitry

MICHIGAN

Damage Identification with Integrated Bistable and Adaptive Piezoelectric Circuitry

- Damage identification for various cases: 1000 combinations of
 - 0.5, 1, 1.5, or 2% element stiffness reduction,
 - 1, 2, or 3 locations of damages.

/ICHIGAI

Summary and Conclusion

- Develop integrated bistable and adaptive piezoelectric circuitry
 - ➔ Fundamental improvement of <u>underdetermined inverse</u> <u>problem</u> for damage identification
- Create bistable circuitry sensing platform
 - → Key element to extend the applicability of bifurcation-based sensing scheme
- Establish novel analysis on stochastic and dynamic saddlenode bifurcation
 - → Simple and accurate prediction of the critical conditions of various disciplines that exhibit saddle-node bifurcation
 - → Fundamental understanding of the sensing limit under noise and non-stationary influences.

Future Plans

Vison: Advance System Monitoring and Sensing Strategies for Sustainable and Resilient System Health Management

- Structural health monitoring
 - → Measurement and modeling uncertainty quantification/management
 - → Long-term goal: Prognosis and decision-making for maintenance
 - → Collaboration with UTC in engine health monitoring
- Bifurcation-based bistable circuitry sensors
 - → Various bistable circuitry architecture and optimal parameter design
 - \rightarrow Application with MEMS sensors for HVAC systems \rightarrow medical, safety
- Forecasting critical transitions in complex systems
 - Nonlinear bifurcation prediction + model-less data-driven approach
 - Ecological and climate systems to aero-elasticity in aircraft, power grid systems

The End

Questions?