Nonsmooth Differential-Algebraic Equations

Paul I. Barton

Process Systems Engineering Laboratory Massachusetts Institute of Technology

Dynamic Modeling Frameworks in PSE

Trade-off: applicability vs. ease of modeling & solving

Hybrid Automaton Framework

Simple const. P flash process:

$$\dot{H}(t) = U(T_{out} - T(t))$$

$$M = M_L(t) + M_V(t)$$

$$H(t) = Mh_V(t) - M_L(t)\Delta h_{vap}(T(t))$$

$$h_V(t) = Cp(T(t) - T_0)$$

$$\log(P^{sat}(t)) = A - B/(T(t) + C)$$

DAE embedded in hybrid automaton

Hybrid vs. Nonsmooth

Hybrid automaton formulation

"Continuous" disjunction:

Hybrid vs. Nonsmooth

"Continuous" disjunction:

|||;;;

$$\begin{array}{c} M_V(t) = 0 \\ M_L(t) > 0 \\ P \ge P^{\text{sat}}(T(t)) \end{array} \Bigg| \bigotimes \left[\begin{array}{c} M_V(t) > 0 \\ M_L(t) > 0 \\ P = P^{\text{sat}}(T(t)) \end{array} \right] \bigotimes \left[\begin{array}{c} M_V(t) > 0 \\ M_L(t) = 0 \\ P = P^{\text{sat}}(T(t)) \end{array} \right] \bigotimes \left[\begin{array}{c} M_V(t) > 0 \\ M_L(t) = 0 \\ P \le P^{\text{sat}}(T(t)) \end{array} \right] \Bigg| \bigotimes \left[\begin{array}{c} M_V(t) > 0 \\ M_L(t) = 0 \\ P \le P^{\text{sat}}(T(t)) \end{array} \right] \Bigg| \bigotimes \left[\begin{array}{c} M_V(t) > 0 \\ M_L(t) = 0 \\ P \le P^{\text{sat}}(T(t)) \end{array} \right] \Bigg| \bigotimes \left[\begin{array}{c} M_V(t) > 0 \\ M_L(t) = 0 \\ P \le P^{\text{sat}}(T(t)) \end{array} \right] \Bigg| \bigotimes \left[\begin{array}{c} M_V(t) > 0 \\ M_L(t) = 0 \\ P \le P^{\text{sat}}(T(t)) \end{array} \right] \Bigg| \bigotimes \left[\begin{array}{c} M_V(t) > 0 \\ M_L(t) = 0 \\ P \le P^{\text{sat}}(T(t)) \\ P \le P^$$

Nonsmooth equation:

$$0 = \operatorname{mid}\left(M_V(t), P - P^{\operatorname{sat}}(T(t)), -M_L(t)\right)$$

Nonsmooth Models: Applications

- Intensive properties with flow reversals
- Flow transitions (laminar, turbulent, choked)
- Thermodynamic phase changes
- Crystallization kinetics: growth vs. dissolution
- Flow control devices, diodes
- Irregularities in vessel geometry
- Dynamic flux balance analysis (DFBA) systems
 e.g., aerobic to anaerobic switch
- Various "elements" of controllers
- Protecting domains of functions (abs)
- Piecewise properties
- etc., etc.

7

Flow Reversal: Intensive Properties

Multi-component Dynamic VLE

Mass and energy balances:

$$\begin{aligned} \frac{dM_{i}}{dt}(t) &= F_{in}(t)z_{i}(t) - F_{L}(t)x_{i}(t) - F_{V}(t)y_{i}(t) \\ \frac{dU}{dt}(t) &= F_{in}(t)h_{in}(t) - F_{L}(t)h_{L}(t) - F_{V}(t)h_{V}(t) + Q(t) \\ M_{i}(t) &= M_{L}(t)x_{i}(t) + M_{V}(t)y_{i}(t) \\ \sum_{i=1}^{n_{C}} M_{i}(t) &= M_{L}(t) + M_{V}(t) \\ H(t) &= M_{L}(t)h_{L}(t) + M_{V}(t)h_{V}(t) \\ H(t) &= U(t) + P(t)V \end{aligned}$$

Thermodynamic phase equilibrium:

 $y_i(t) = k_i(t) x_i(t)$

$$0 = \operatorname{mid}\left(\frac{M_{V}(t)}{M_{V}(t) + M_{L}(t)}, \sum_{i=1}^{n_{C}} x_{i}(t) - \sum_{i=1}^{n_{C}} y_{i}(t), \frac{M_{V}(t)}{M_{V}(t) + M_{L}(t)} - 1\right)$$

Flow control:

$$F_{V}(t) = c_{v} \min(V_{V}^{\min}, V_{V}(t)) \max\left(0, \frac{P(t) - P_{0}}{\sqrt{P(t) - P_{0}}}\right)$$
$$F_{L}(t) = c_{l} \min(V_{L}^{\min}, V_{L}(t)) \max\left(0, \frac{K_{L}(t)}{\sqrt{K_{L}(t)} + \varepsilon}\right)$$
$$K_{L}(t) = g \frac{V_{L}(t)}{A} + \frac{P(t) - P_{0}}{\rho_{L}(t)}$$

Multi-component Phase Change

Sahlodin, Watson, Barton, AIChE J. 62 (2016): 3334-3351

|||;;

Crystallization Kinetics

• With the development of continuous crystallization processes, dissolution has to be considered in dynamic models of crystal size distribution: $\partial(V_n) = \partial(V_n)$

$$\frac{\partial(Vn)}{\partial t}(t,z) + K(t)\frac{\partial(Vn)}{\partial z}(t,z) = Q_{in}(t)n_{in}(t,z) - Q_{out}(t)n(t,z)$$

$$S(t) = \left(x_{i}(t) - x_{i}^{sat} \right) / x_{i}^{sat}, \quad K(t) = \min \left(k_{D} S(t) \left| S(t) \right|^{n_{D}-1}, k_{G} \left| S(t) \right|^{n_{G}} \right)$$

• With finite volume discretization of the size coordinate:

$$\frac{dN_{j}}{dt}(t) + \frac{1}{\Delta z} \Big(G(t) \Big(N_{j}(t) - N_{j-1}(t) \Big) + D(t) \Big(N_{j+1}(t) - N_{j}(t) \Big) \Big) = Q_{in}(t) n_{j,in}(t) - Q_{out}(t) n_{j}(t), \qquad j = 2, \dots, m-1$$

 $G(t) = \max\left(0, k_G S(t) |S(t)|^{n_G - 1}\right)$ $D(t) = \min\left(k_D S(t) |S(t)|^{n_D - 1}, 0\right)$

$$N_j \equiv V n_j$$
,
 n_j – density of crystals of size $(j - 1)\Delta L < L < j\Delta L$

Crystallization Kinetics

Switching between regimes of positive and negative super-saturation:

Regularization of Nonsmooth DAEs

Nonsmooth DAEs:

$$\dot{\mathbf{x}}(t,\mathbf{p}) = \mathbf{f}(t,\mathbf{p},\mathbf{x}(t,\mathbf{p}),\mathbf{y}(t,\mathbf{p}))$$
$$\mathbf{0} = \mathbf{g}(t,\mathbf{p},\mathbf{x}(t,\mathbf{p}),\mathbf{y}(t,\mathbf{p}))$$
$$\mathbf{x}(t_0,\mathbf{p}) = \mathbf{f}_0(\mathbf{p})$$

- \succ **f** is piecewise continuous w.r.t. t and continuous w.r.t. **p**, **x**, **y**
- $\succ~{f g}$ is locally Lipschitz continuous
- "Index 1" Nonsmooth DAEs: generalized differentiation index one
- Existence, uniqueness, continuous/Lipschitz dependence on parameters, etc.

Stechlinski and Barton, Journal Diff. Eqns. 262 (2017): 2254-2285

Generalized Differentiation Index

◆ Given locally Lipschitz continuous f: ℝⁿ → ℝ^m:
 > Clarke's Generalized Jacobian

$$\partial \mathbf{f}(\mathbf{x}) \coloneqq \operatorname{conv} \left\{ \mathbf{H} : \mathbf{J}\mathbf{f}(\mathbf{x}_{(j)}) \to \mathbf{H}, \mathbf{x}_{(j)} \to \mathbf{x}, \mathbf{x}_{(j)} \in X \setminus Z_{\mathbf{f}} \right\}$$

Example:

$$\begin{array}{c} f(x) = |x| \\ \partial f(x) = \{-1\} \\ \partial f(x) = \{1\} \\ \partial f(0) = [-1,1] \end{array}$$

"Index-1" Nonsmooth DAE:

No singular matrix in the set {**M** : \exists [**N M**] $\in \partial \mathbf{g}(t, \mathbf{p}, \mathbf{x}(t, \mathbf{p}), \mathbf{y}(t, \mathbf{p}))$ }

 $\rightarrow x$

» If **g** is C¹:
$$\left\{\frac{\partial \mathbf{g}}{\partial \mathbf{y}}(t,\mathbf{p},\mathbf{x}(t,\mathbf{p}),\mathbf{y}(t,\mathbf{p}))\right\}$$

Clarke, Optimization and Nonsmooth Analysis, SIAM, 1990. Stechlinski and Barton, *Journal Diff. Eqns.* 262 (2017): 2254–2285

Illii The "Red-line" Novartis-MIT Center

Mascia et al. "End-to-End Continuous Manufacturing of Pharmaceuticals: Integrated Synthesis, Purification, and Final Dosage Formation", *Angew. Chem. Int. Ed.* 2013, 52, 12359 –12363

Dynamic Optimization in PSE

Campaign continuous manufacturing:

- Maximize production, minimize off-spec.
- Discrete" phenomena: start-up/shut-down, phase changes, crystal growth/dissolution, etc., etc.

Sahlodin and Barton, Ind. Eng. Chem. Res. 54 (2015):11344-11359.

Dynamic Optimization of DAEs

Dynamic Optimization of DAEs

Sensitivities of Hybrid Automata

Galan, Feehery, Barton, App. Num. Math. 31 (1999): 17-47

IIT Nonsmooth DAE Sensitivities: Generalized Derivatives

Want generalized derivative elements

> Nonsmooth analog of $\frac{\partial \mathbf{x}}{\partial \mathbf{p}}(t_f, \mathbf{p}_0), \frac{\partial \mathbf{y}}{\partial \mathbf{p}}(t_f, \mathbf{p}_0)$

Difficult to evaluate in general (lack of sharp calculus rules, etc.)

New tool: lexicographic directional (LD-)derivatives

- Nonsmooth analog to classical directional derivative
- Applicable to a wide class of functions (C¹, PC¹, convex, arbitrary compositions of such, etc.)
- Satisfies strict calculus rules (e.g. chain rule)

Accurate, automatable and computationally cheap method Khan and Barton, Opt. Meth. & Soft. 30 (2015): 1185-1212

 $\partial \mathbf{x}_{t_{r}}(\mathbf{p}_{0}), \partial \mathbf{y}_{t_{r}}(\mathbf{p}_{0})$

Lexicographic Differentiation

• $\mathbf{f}: X \in \mathbf{R}^n \to \mathbf{R}^m$ is L-smooth at $\mathbf{x} \in X$ if it is locally Lipschitz continuous and directionally differentiable, and if, for any $\mathbf{M} := [\mathbf{m}_{(1)} \cdots \mathbf{m}_{(p)}] \in \mathbf{R}^{n \times p}$, the following functions exist:

$$\mathbf{f}_{\mathbf{x},\mathbf{M}}^{(0)}: \mathbf{d} \mapsto \mathbf{f}'(\mathbf{x};\mathbf{d})$$
$$\mathbf{f}_{\mathbf{x},\mathbf{M}}^{(1)}: \mathbf{d} \mapsto [\mathbf{f}_{\mathbf{x},\mathbf{M}}^{(0)}]'(\mathbf{m}_{(1)};\mathbf{d})$$
$$\vdots$$
$$\mathbf{c}^{(n)} = \mathbf{d} \mapsto \mathbf{c}^{(n-1)}\mathbf{d} \leftarrow \mathbf{c}^{(n-1)}\mathbf{d}$$

$$\mathbf{f}_{\mathbf{x},\mathbf{M}}^{(p)}:\mathbf{d}\mapsto [\mathbf{f}_{\mathbf{x},\mathbf{M}}^{(p-1)}]'(\mathbf{m}_{(p)};\mathbf{d})$$

- If the columns of M span \mathbb{R}^n , then $\mathbf{f}_{\mathbf{x},\mathbf{M}}^{(p)}$ is linear, L-derivative: $\mathbf{J}_{\mathrm{L}}\mathbf{f}(\mathbf{x};\mathbf{M}) \coloneqq \mathbf{J}\mathbf{f}_{\mathbf{x},\mathbf{M}}^{(p)}(\mathbf{0})$
- Lexicographic subdifferential:

$$\partial_{\mathrm{L}} \mathbf{f}(\mathbf{x}) = \{ \mathbf{J}_{\mathrm{L}} \mathbf{f}(\mathbf{x}; \mathbf{M}) : \mathbf{M} \in \mathbf{R}^{n \times n}, \text{ det } \mathbf{M} \neq 0 \}$$

Y. Nesterov, Math. Program. B, 104 (2005) 669-700.

Lexicographic Differentiation

Systematically probes local derivative information

LD-Derivatives

• Given L-smooth **f** and directions matrix $\mathbf{M} \coloneqq \begin{bmatrix} \mathbf{m}_{(1)} & \cdots & \mathbf{m}_{(k)} \end{bmatrix}$

$$\mathbf{f}'(\mathbf{x};\mathbf{M}) \coloneqq \left[\mathbf{f}_{\mathbf{x},\mathbf{M}}^{(0)}(\mathbf{m}_{(1)}) \ \mathbf{f}_{\mathbf{x},\mathbf{M}}^{(1)}(\mathbf{m}_{(2)}) \ \cdots \ \mathbf{f}_{\mathbf{x},\mathbf{M}}^{(k-1)}(\mathbf{m}_{(k)}) \right]$$

• If **M** is square and nonsingular:

$$\mathbf{f}'(\mathbf{x};\mathbf{M}) = \mathbf{J}_{\mathrm{L}}\mathbf{f}(\mathbf{x};\mathbf{M})\mathbf{M}$$

• If **f** is C¹ at **x**:

$$\mathbf{f'}(\mathbf{x};\mathbf{M}) = \mathbf{J}\mathbf{f}(\mathbf{x})\mathbf{M}$$

Sharp LD-derivative chain rule:

$$\left[\left[\mathbf{f} \circ \mathbf{g} \right]'(\mathbf{x}; \mathbf{M}) = \mathbf{f}'(\mathbf{g}(\mathbf{x}); \mathbf{g}'(\mathbf{x}; \mathbf{M})) \right]$$

Khan and Barton, Opt. Meth. & Soft. 30 (2015): 1185-1212

Generalized Derivatives Landscape

 LD-derivatives furnish gen. deriv. elements (green dots) in tractable way

Khan and Barton, *Opt. Meth. & Soft.* 30 (2015): 1185-1212 Khan and Barton, *Journal Opt. Theory. Appl.* 163 (2014): 355-386

Dynamic Optimization of DAEs

Stechlinski and Barton, Journal Opt. Theory. Appl. 171 (2016): 1-26

Simple Flash Process: Mode Sequence

Mode sequence varies under parametric perturbations

Simple Flash Process: Sensitivities

 Nonsmooth sensitivities: $\dot{S}_{H}(t) = U(1 - S_{T}(t))$ $S_{H}(t) = MCpS_{T}(t) - \Delta h_{vap}'(T(t))S_{T}(t)$ $0 = \operatorname{mid}'(M_{V}(t), P - P_{sat}(T(t)), -M_{L}(t); (S_{V}(t), -P_{sat}'(T(t))S_{T}(t), -S_{L}(t)))$ $S_{V}(t) = -S_{L}(t)$

Process Flow Diagram

R. Lakerveld et. al, "The Application of an Automated Control Strategy for an Integrated Continuous Pharmaceutical Pilot Plant", Org. Process Res. Dev. 2015, 19, 1088–1100.

I'lii The "Red-line" Nonsmooth Process Model

Illii The "Red-line" Nonsmooth Process Simulation

Problem formulation

Our approach, inspired by the 'turnpike theory':

Comparison to the classical approach:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{u}, t) = \mathbf{0}, \quad \forall t \in [t^{on}, t^{off}]$$

On-spec production (where quality constraints are met)

A. M. Sahlodin and P. I. Barton, Optimal Campaign Continuous Manufacturing *Ind. Eng. Chem. Res.*, 2015, 54 (45), pp 11344–11359

Illii Case study: **Multi Objective Optimization**

Pareto Curves

Nonsmooth DAEs

- Summary of Progress:
 - Possess a strong mathematical theory (recently)
 - » Hence, formulate model this way if you can!
 - Easy-to-use and solve and do sensitivity analysis
 - Applicable to variety of operational problems:
 - » See Sahlodin, Watson and Barton, AIChE Journal 62 (2016)
 - Numerical toolkit: amenable to computationally tractable (e.g. automatic differentiation) methods
 - » See Khan and Barton, OM&S 30 (2015)
 - » LD-derivative rules for abs, min, max, mid, 2-norm, etc.

Future Work:

- Numerical implementations
- "High-index" nonsmooth DAEs
- > Adjoint sensitivities

Acknowledgments

- Peter Stechlinski, Michael Shoham Patrascu, Harry Watson, Kamil Khan, Ali Sahlodin
- Funding Sources:
 - The Novartis-MIT Center for Continuous Manufacturing
 - Natural Sciences and Engineering Research Council of Canada (NSERC)

UNOVARTIS

Flow Transitions

 Transitioning between flow regimes can be modeled using one nonsmooth equation

$$Nu(t) = max (Nu_{l}(t), Nu_{tr}(t))$$

$$Nu_{l}(t) = 14.5$$

$$Nu_{tr}(t) = (Nu_{l} exp((Re(t) - Re_{c})/b) + Nu_{t}^{c})^{c}$$

$$Nu_{t}(t) = 0.023 Re(t)^{0.8} Pr^{1/3}$$

$$u_{t}(t) = 0.023 Re(t)^{0.8} Pr^{1/3}$$

$$u$$

 Re

Sensitivities of Nonsmooth DAEs

DAE Smooth vs. Nonsmooth:

Nonsmooth sensitivities:

$$\dot{\mathbf{X}}(t) = [\mathbf{f}_t]'(\mathbf{p}_0, \mathbf{x}(t, \mathbf{p}_0), \mathbf{y}(t, \mathbf{p}_0); (\mathbf{M}, \mathbf{X}(t), \mathbf{Y}(t))$$
$$\mathbf{0} = [\mathbf{g}_t]'(\mathbf{p}_0, \mathbf{x}(t, \mathbf{p}_0), \mathbf{y}(t, \mathbf{p}_0); (\mathbf{M}, \mathbf{X}(t), \mathbf{Y}(t))$$
$$\mathbf{X}(t_0) = [\mathbf{f}_0]'(\mathbf{p}_0; \mathbf{M})$$

- Nonsmooth and nonlinear DAE system
- Unique solution and unique initialization
- $\succ X$ continuous, Y discontinuous
- Once solved, obtain generalized derivative elements (sensitivities) via linear equation solve

> Stechlinski and Barton, Journal Opt. Theory. Appl. 171 (2016): 1-26

Smooth sensitivities:

$$\frac{\partial \dot{\mathbf{x}}}{\partial \mathbf{p}} = \frac{\partial \mathbf{f}}{\partial \mathbf{p}} + \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \mathbf{p}} + \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{p}} \\
\mathbf{0} = \frac{\partial \mathbf{g}}{\partial \mathbf{p}} + \frac{\partial \mathbf{g}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \mathbf{p}} + \frac{\partial \mathbf{g}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{p}} \\
\frac{\partial \mathbf{x}}{\partial \mathbf{p}}(t_0) = \mathbf{J} \mathbf{f}_0(\mathbf{p}_0)$$

- Linear DAE system
- > Unique soln. & init.

$$\geq \frac{\partial \mathbf{x}}{\partial \mathbf{p}}(\cdot, \mathbf{p}_0), \frac{\partial \mathbf{y}}{\partial \mathbf{p}}(\cdot, \mathbf{p}_0) \text{ continuous}$$