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The SEAK Lab at Cornell 

5 PhD students + several Meng/UG in 
Mechanical & Aerospace Engineering and  
Systems Engineering 
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SEAK Lab Mission 
To support development of the next generation of aerospace concepts and 

architectures while studying and improving the architectural design process 

Developing mission 
design tools & 

methods 

Conducting mission 
architecture/design 

studies 

Global Optimization 

Machine Learning 

Visual and Data Analytics 

Multi-Agent Systems 

Knowledge-Based Systems 

Human-Agent Interaction 

Understanding space 
mission design process 
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A motivating example… Earth Observing Systems 

• Current architecture is single large monolithic satellite  
• Future systems will be distributed, collaborative networks of intelligent 

heterogeneous assets sharing information in real-time and making decisions 
autonomously 
 

Image credit: NASA  
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How are complex systems designed today? 
Quantitative approaches 

• Focus on rigor, consistency, 
exhaustiveness, and choosing 
“most preferred” design (e.g., 
decision-based design) 

Qualitative approaches 
• Focus on creativity (e.g. 

brainstorming), empathy (e.g., 
design thinking) and consensus 
(e.g., Delphi) 
 

Human-centered design Automated design 
5 



Example Problem & Tool: Decadal Survey 
Earth Science Decadal Survey is an NRC 
study that recommends a set of Earth observing 
missions to cover needs of Earth sciences 
 
Given the 6 following missions and their 13 
instruments: 

SMAP (2), ICESAT-II (1), DESDYNI (2), 
CLARREO (3), ASCENDS (3), HYSPIRI 
(2) 

Is there a better partitioning architecture?  
27 million architectures 

Metrics: 
Science 
Lifecycle cost 
Launch risk 
Programmatic risk 
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Highest risk
Higher risk
Medium risk
Low risk
Lowest risk
Reference architecture
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Example of results 

(1) 
(2) (3) 

(1) 

(2) 

(3) 

(ref) 
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Selva, D., Cameron, B. G., & Crawley, E. F. (2014). Rule-Based System 
Architecting of Earth Observing Systems: Earth Science Decadal 
Survey. Journal of Spacecraft and Rockets, 51(5), 1505–1521. 
http://doi.org/10.2514/1.A32656 
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Some challenges in design of complex systems 

• How can we represent and leverage the 
knowledge human experts have to improve 
efficiency and effectiveness of design tools?  

• How can tools help humans discover knowledge 
such as the high-level design features and trade-
offs driving the cost and performance of complex 
systems?  
 

8 
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Outline for today: Duplex “knowledge transfer” 

• How can we help humans discover the high-level design features and trade-
offs driving the cost and performance of complex systems?  

– i-feed: interactive extraction of high-level association rules and compact mental 
models in design spaces 

– cityplot: visualization of multi-objective mixed-integer design spaces 
 
 

• How can we represent and leverage the knowledge human experts have to improve 
design of complex systems?  

– VASSAR: scalable and traceable knowledge-intensive architecture evaluation 

– KDO/AOS: self-organizing robust optimization of complex design spaces 

9 



• The need for knowledge-intensive evaluation 
• Traceability and Scalability 
• Knowledge-based systems 

• An architecture for knowledge-intensive value functions 

VASSAR: leveraging knowledge in evaluation 

© Daniel Selva, 2017 10 
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A complicated “knowledge-intensive” problem 
• Consider Decadal Survey example 

 
• Lots of knowledge must be put into 

the model in order for it to be useful 
 

• This also makes it hard to debug the 
model: when you get a result that 
doesn’t make sense, it’s hard to trace 
it back to individual assumptions.  
 

• Regular models lack scalability and 
traceability of knowledge. Can we 
do something better?  
 Selva, D. & Crawley, E., 2010. Integrated assessment of packaging architectures in Earth observing programs. In Aerospace Conference, 

2010 IEEE. Big Sky: IEEE, pp. 3–12. 11 



Knowledge-based systems to the rescue 
• Experts store their knowledge in 

“chunks” that fit well the structure of 
logical rules (Newell & Simon, 1972) 
 

• Rule-based systems solve complex 
problems by using thousands of logical 
rules in a computer program, imitating 
human reasoning  
• First Rule-based System: MYCIN 

experiment (Buchanan & Shortliffe, 
1984) 

© Daniel Selva, 2017 12 



VASSAR: An architecture for knowledge-intensive 
evaluation of space systems 

Selva, D. & Crawley, E., 2013. VASSAR: Value Assessment of System Architectures using Rules. In Aerospace Conference, 2013 IEEE. Big Sky: IEEE.  
Conference Best Paper Award. © Daniel Selva, 2017 13 



VASSAR – Automatic Generation of 
Explanations 

• Science: (1) has higher science than (ref) because: 
– (ref) partially misses subobjectives related to surface deformation and 

hydrorcabon reservoir monitoring due to SAR flying at 600km 
compromise orbit 
 

• Cost: (1) also has lower cost than (ref) because: 
– (ref) has to put a lidar at 600km (higher instrument and bus cost) 
– Lower launch costs (1 Atlas 5 = $110M > 2xD7320 = $90M) 
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Survey. Journal of Spacecraft and Rockets. 
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• Multi-objective evolutionary optimization 
• Domain-specific and domain-independent operators 

• Knowledge-driven optimization 
• Adaptive operator selection 

 

KDO/AOS: leveraging knowledge in optimization 

© Daniel Selva, 2017 15 



Evolutionary algorithms are useful and popular 
• Evolutionary algorithms such as 

NSGA-II, 𝜖𝜖-MOEA and others are 
very popular in design 

• Evolve a population of solutions 
(designs) by iteratively applying a 
set of operators. 

• Domain-independent operators 
– Crossover 
– Mutation 

NASA ST5 spacecraft antenna (Wiki)  © Daniel Selva, 2017 16 



Hyper-heuristics – Self-organizing optimization 
• Use a set of operators/heuristics 𝑂𝑂 

– Domain-independent: Different kinds of 
Crossover, mutation, etc. 

– Or Domain-specific! 
• Credit assignment: Measure performance of 

each operator over time 
– 𝑐𝑐𝑖𝑖,𝑡𝑡 = credit received by 𝑜𝑜𝑖𝑖 at iteration t 
– Example: 𝑐𝑐𝑖𝑖,𝑡𝑡 ∝ 𝑓𝑓 𝒙𝒙𝑝𝑝 − 𝑓𝑓 𝒙𝒙𝑜𝑜𝑖𝑖,𝑡𝑡  

• Operator selection: Assign solutions to 
operators proportionally to their quality (𝑞𝑞𝑖𝑖,𝑡𝑡 
= quality of 𝑜𝑜𝑖𝑖 at iteration t) 
 𝑞𝑞𝑖𝑖,𝑡𝑡+1 = 1 − 𝛼𝛼 ⋅ 𝑞𝑞𝑖𝑖,𝑡𝑡 + 𝛼𝛼 ⋅ 𝑐𝑐𝑖𝑖,𝑡𝑡 

𝑝𝑝𝑖𝑖,𝑡𝑡+1 = 𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚 + 1 − 𝑂𝑂 ⋅ 𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚 ⋅
𝑞𝑞𝑖𝑖,𝑡𝑡+1

∑ 𝑞𝑞𝑗𝑗,𝑡𝑡+1
|𝑂𝑂|
𝑗𝑗=1

 

𝑎𝑎 ∈ 0,1  = adaptation rate 
𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚 = minimum selection probability  © Daniel Selva, 2017 17 



Hyper-heuristics outperform state-of-the-art EA 
• We measured performance of 9 different HH (new and existing) on 26 

different benchmarking problems (WFG, UF, DTLZ) 
• Our experiments show that HH consistently outperform state-of-the-art EA 

over wide range of problems 
• HH are able to discover the operator(s) that work better for each problem 

 

Hitomi, N., and Selva, D., A Classification and Comparison of Credit Assignment Strategies in Multiobjective Adaptive Operator Selection. Under review in IEEE 
Transactions on Evolutionary Computation. 

© Daniel Selva, 2017 18 



Domain knowledge is available – why not use it? 
• Examples of chunks of expert 

knowledge 
– Put synergistic instruments together 
– Putting 2+ high-energy instruments 

together not good 
– Don’t put optical instruments in 

low-light orbits 
– Avoid mechanical, thermal and 

electromagnetic interferences 
• Why not take advantage of the 

domain-specific knowledge 
available?  
 

© Daniel Selva, 2017 19 



Incorporating domain knowledge is not trivial 
• Incorporating domain knowledge 

can be done by means of 
– Constraints 
– Initial population 
– Operators 
– Human in the loop 

• Our early experiments showed that 
using domain-specific operators lead 
to faster but premature 
convergence and lack of diversity 
in the population . 

© Daniel Selva, 2017 

Example of domain-specific operators 
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Hyper-heuristics enable using domain knowledge 

Hitomi, N., & Selva, D. (2016). A hyperheuristic approach to leveraging domain knowledge in multi-objective evolutionary algorithms. Accepted to ASME 2016 International 
Design Engineering Technical Conferences. Charlotte, NC. 

Hyper-heuristics can use 
domain-specific heuristics 
to accelerate optimization 
at beginning and then 
shut them down to avoid 
premature convergence! 

© Daniel Selva, 2017 21 
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Outline for today: Duplex “knowledge transfer” 

• How can we help humans discover the high-level design features and trade-
offs driving the cost and performance of complex systems?  

– i-feed: interactive extraction of high-level association rules and compact mental 
models in design spaces 

– cityplot: visualization of multi-objective mixed-integer design spaces 
 
 

• How can we represent and leverage the knowledge human experts have to improve 
design of complex systems?  

– VASSAR: scalable and traceable knowledge-intensive architecture evaluation 

– KDO/AOS: self-organizing robust optimization of complex design spaces 

22 



• Beyond optimization – “learning” 
• Feature selection with association rule mining 

• Feature structure and prediction with classification tree 
 

iFEED: Interactive Feature Extraction for Engineering Design 

© Daniel Selva, 2017 23 



• Users of design optimization tools: 
“Actual output of the tool is not the 
most important part; it’s all about 
what is learnt while using the tool.”  

• What is it that they learn?  
– What metrics are more sensitive to 

what design variables?  
– What, if anything, do good (or bad) 

architectures have in common? 
– What combinations of variables drive 

the formation of clusters in the design 
space?  

– How much of this is generalizable to 
other concepts?  

It’s not only about optimizing – also about “learning” 

© Daniel Selva, 2017 24 



• Feature: Any design variable or function of 
several design variables 
– Driving feature: A feature that is 

consistently found in a class of designs 
more often than in the others 

• Goal: Automatically identify a small set of 
driving features with high predictive power 
for goodness of a design (feature 
extraction problem) 
– Spoiler alert: Driving features are rarely 

just design variables;  
– instead, they tend to be high-level 

combinations of multiple design variables 
– Intermediate variables can help generalize 

 

Driving features 

Driving feature: min(#sensors, #computers) 

Driving features:  
At least 3 orbits populated 
No 2+ large instruments together 
IRS + MWS + CHEM on same orbit 

© Daniel Selva, 2017 25 



Driving Feature Detection – Association Rules 

• Given a binary feature space, association rule mining is a simple unsupervised 
ML technique to find rules of the form: F ⟹ C where F and C are two features. 

• Based on the following metrics: 

– 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝 𝐹𝐹 ≡ 𝐹𝐹
𝑈𝑈

 

– 𝑐𝑐𝑜𝑜𝑐𝑐𝑓𝑓 𝐹𝐹 ⇒ 𝐶𝐶 = 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝 𝐹𝐹∩𝐶𝐶
𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝 𝐹𝐹

 

– 𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙 𝐹𝐹 ⇒ 𝐶𝐶 ≡ 𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐 𝐹𝐹⟹𝐶𝐶
𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝 𝐶𝐶

 

• Simple algorithm: Try all possible rules. A rule on a high-support feature that 
has high confidence and high lift is a driving feature. 
– What is high? Thresholds must be defined. 

• Problem: the feature space is larger than the design space, possibly with infinite 
representations (curse of dimensionality). 
– Example: the number of features in a binary space of length N is 3𝑁𝑁 > 2𝑁𝑁 

© Daniel Selva, 2017 26 



iFEED: Bringing the human into the loop 

1. Formulation of candidate driving features 
2. Selection of a region of interest in the tradespace 

(e.g. high performance, low cost, and low Pareto 
ranking designs)  

3. Identifying a subset of driving features from the 
candidate features, using association rule mining 

4. Building a compact form of classifier using 
driving features as predictors and the region of 
interest as the label 

5. Evaluation of the classifier.  
Iterate if needed 

 

© Daniel Selva, 2017 27 



 
• Formulation of candidate driving features using domain-specific 

knowledge and insights obtained by observing the structure of 
the problem 

• Limits the feature space to be searched (number of all possible 
features is unbounded!) 

• Opportunities to search high level features 
 

1. Formulation of candidate driving features 

© Daniel Selva, 2017 28 



• Selection of the target region in the objective space 
– Defining goodness function (e.g. expected utility, NPV, Pareto ranking) 
– Visual selection of designs 

 

2. Selection of a region of interest 

© Daniel Selva, 2017 29 






3. Identifying driving features 

© Daniel Selva, 2017 30 






• Classification trees introduce hierarchical structure and 
priority information about driving features 
– They are among the most human-understandable machine 

learning models 
• Driving features are selected as test nodes of the 

classification tree. C4.5 algorithm recursively selects 
features with largest information gain 
 

4. Building classification tree using driving features 

© Daniel Selva, 2017 31 
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4. Building classification tree using driving features 
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Towards cognitive design assistants  
and mixed-initiative design 

The Vision 
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So far, focus on making design tools smarter 

• Emphasis in engineering design has been to make design 
tools more intelligent = adaptive 

• Adaptive… 
– Formulations (variables) 

• Design vector “zooms in” on variables (I. Y. Kim and O. L. de Weck, “Variable chromosome length genetic 

algorithm for progressive refinement in topology optimization,” Struct. Multidiscip. Optim., vol. 29, no. 6, pp. 445–456, Jan. 2005) 
– Models (objective function) 

• Bayesian Optimization (P. Frazier and J. Wang, “Bayesian Optimization for Materials Design,” in Information science for 

materials discovery and design, vol. 225, T. Lookman, F. J. Alexander, and K. Rajan, Eds. 2015, pp. 45–75) 
– Search strategies 

• Parameter tuning (G. S. Tewolde, D. M. Hanna, and R. E. Haskell, “Enhancing performance of PSO with automatic parameter 

tuning technique,” 2009 IEEE Swarm Intell. Symp., no. 1, pp. 67–73, Mar. 2009) 
• Adaptive operator selection (E. Burke, G. Kendall, J. Newall, and E. Hart, “Hyper-heuristics: An emerging direction 

in modern search technology,” in International series in operations research and management science, 2003, pp. 457–474) 
 
 34 
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Vision 
• Cast design tools as intelligent agents 
• Try to learn from intelligent systems 

(e.g., robotics) community 
– For unstructured and uncertain tasks, 

robotics community has moved away 
from autonomy to human-robot 
collaboration and mixed initiative 

• Currently, either 100% human or fully 
automated design (autonomy) 

• Wait: Design IS a highly unstructured 
task+! 

• Propose mixed-initiative design#!! 

100% autonomous 100% manual 

100% autonomous 100% manual 

Design today 

Mixed-initiative Design 

35 
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Mixed-initiative Design 

• Informally: no clearly defined master-slave roles, 
more balanced role allocation 

• Shared plans and intentions 
• Dynamic role/function allocation 
• Shared attention and “common ground” 
• Trust-building, collaborative interaction 
• Embodied interaction 

36 
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Design tools as intelligent agents  

37 
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A plan to implement that vision 

38 
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Cognitive design assistants 
• Self-explaining abilities 
• Meaningful dialogues and 

interactions 
• Verbal and non-verbal interactions 
• New roles 

– Design Analyst 
– Design Critic 

• Highlighted by NSF ESD PD as a 
new promising area of research 
– Still declined my CAREER!  

IBM-SoftBank 

IBM-Hilton 

39 



Summary and Concluding remarks  

• Design of complex systems is a hard problem 
• Emphasis in the past was design automation 

– I still do a lot of that! 
• More collaborative approaches are promising 
• (Part of) the future of design is cognitive design 

assistants! 
 

© Daniel Selva, 2017 40 
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Current and future work 

• KDO/AOS: Incorporating chunks of knowledge through 
different implementations of soft constraints and repair 
operators 

• iFEED: Driving feature generalization – incorporating 
intermediate design attributes. Which visualizations work 
better for experts/novices?   

• Daphne (design assistant for Earth observing sats) 
– Natural Language Processing Layer 
– Design Analyst Role 
– Design Critic Role 
– Embodied interaction  
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Questions? 
Thank you!  
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Goal: Visualize design “landscape”  
Handle large spaces  

Discrete and continuous variables.  
Multidimensional scaling to reduce design space to 2D  

Bar plot to show normalized objectives 

Cityplot: visualizing multi-objective design spaces 
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Visualization for knowledge discovery: Challenges 
• Visual analytics has become a popular 

approach to knowledge discovery in 
design 
 

• Histograms, parallel coordinates, 
glyphs and scatter plots are often used 
 

• Challenges: 
– Linking design space information 

with objective space information 
– Scaling to high-dimensional spaces 
– Handling discrete variables ARL Tradespace Visualizer by (Stump et al. 2004) 
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Visualizing the design landscape 
• If there were only 1 metric z and 2 decisions x,y we could easily view what the design 

landscape looks like 
• How can we do the same for higher dimension spaces and discrete variables? 

– Multidimensional scaling to project design space to 2D 
– Bar plots for objective space 

(represents high-dimensional design space) 
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Multidimensional scaling 
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Example Cityplot: Decadal Survey problem 
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“Cities” are designs 
“Roads” indicate distances between designs in decision space 
“skyscrapers” are normalized objective function values 
Cities are placed in the image to reflect the distances in the design space 
Clustering indicates “families” 
Can see “smoothness” of design space 
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• Challenges:  
– How do we define a distance function 

in the design space? 
– How do we choose a set to visualize?  

• Entire space may not be 
computationally feasible  

• Even when feasible, too large set may 
lead to messy plot 

• If rely on sampling, results may 
strongly depend on sampling 

• Future work 
– Automatic family characterization 
– Add auto zoom-in feature 
– Study distance functions in design 
– Study effect of sampling 

 

Challenges of cityplot and future work 

-200
-100

0
100

200
300

-30

-20

-10

0

10

20

30

0

2

4

6

 

 

 9
18

Knerr, N. and Selva, D., “Cityplot: Visualization of multi-Objective Design Spaces”. To be submitted to Journal of Mechanical Design. 
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