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SEAK Lab Mission

To support development of the next generation of aerospace concepts and
architectures while studying and improving the architectural design process

Understanding space ‘
mission design process ‘
eveloping mission ‘ Visual and Data Analytics
design tools &
methods ‘

Global Optimization

Machine Learning

Knowledge-Based Systems

Multi-Agent Systems
onducting mission
architecture/design
studies

_ Human-Agent Interaction
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« Current architecture is single large monolithic satellite

» Future systems will be distributed, collaborative networks of intelligent

heterogeneous assets sharing information in real-time and making decisions
autonomously
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How are complex systems designed today?

Qualitative approaches Quantitative approaches
* [Focus on creativity (e.g. « Focus on rigor, consistency,
brainstorming), empathy (e.g., exhaustiveness, and choosing
design thinking) and consensus “most preferred” design (e.g.,
(e.g., Delphi) decision-based design)

Automated design

© Daniel Selva, 2017 5
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Earth Science Decadal Survey is an NRC

study that recommends a set of Earth observing - y Level 1: Panels
- - - Land ani .
missions to cover needs of Earth sciences | \ FE ‘ S e[| water pane

Level 2: Objectives
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Example of results =~
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Selva, D., Cameron, B. G., & Crawley, E. F. (2014). Rule-Based System | g
Architecting of Earth Observing Systems: Earth Science Decadal
Survey. Journal of Spacecraft and Rockets, 51(5), 1505-1521.
http://doi.org/10.2514/1.A32656
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Some challenges in design of complex systems

 How can we represent and leverage the
knowledge human experts have to improve
efficiency and effectiveness of design tools?

 How can tools help humans discover knowledge
such as the high-level design features and trade-
offs driving the cost and performance of complex
systems?

© Daniel Selva, 2017 8
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Outline for today: Duplex “knowledge transfer

 How can we represent and leverage the knowledge human experts have to improve
design of complex systems?
— VASSAR: scalable and traceable knowledge-intensive architecture evaluation
— KDOJ/AOS: self-organizing robust optimization of complex design spaces

* How can we help humans discover the high-level design features and trade-
offs driving the cost and performance of complex systems?

— i-feed: interactive extraction of high-level association rules and compact mental
models in design spaces

— cityplot: visualization of multi-objective mixed-integer design spaces
© Daniel Selva, 2017 9



1. Decompose the problem

Sabd ;luu; intensive
yit hitec

2. Focognize sub-problem as
aninstance of a chiss of SAP

4, Explore tradespace using

==¥ generic SAT and tailored

heuristics.

proferred system architecture.

6. Check termination criteria
and tarate if required.

VASSAR: leveraging knowledge in evaluation

The need for knowledge-intensive evaluation
» Traceability and Scalability
» Knowledge-based systems

» An architecture for knowledge-intensive value functions

Selecting
probloms
T

Attribute
Inheritance —————>{7
rules
A Instrument
o facts
Pattern matching RHS: Actions
Capability
= rules
savslau\on
. . facts
Activation records =5
facts (M) Q‘L?(_{ facts (M) Q'L?'—{ facts (M) facts (M) J—u
Executing actions S strate smerey
rules rules rules

© Daniel Selva, 2017 10
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A complicated “knowledge-intensive” problem

o Consider Decadal Survey example

[:] Scientificadvantages stimality

. Engineeringadvantages
. Programmaticadvantages

» Lots of knowledge must be put into
the model in order for it to be useful

“MSynergies between
instruments

\ Cost of data cross-
registration

e This also makes it hard to debug the
model: when you get a result that
doesn’t make sense, it’s hard to trace
it back to individual assumptions.

MULTI- INSTRUIVIENTIVIISSIONS DEDICATED MISSIONS

* Regular models lack scalability and
traceability of knowledge. Can we
do something better?

Selva, D. & Crawley, E., 2010. Integrated assessment of packaging architectures in Earth observing programs. In Aerospace Conference,
2010 IEEE. Big Sky: IEEE, pp. 3-12. © Daniel Selva, 2017 11
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Knowledge-based systems to the rescue

» Experts store their knowledge in
“chunks” that fit well the structure of Rules
logical rules (Newell & Simon, 1972) o

LHS: Conditions Facts

* Rule-based systems solve complex
problems by using thousands of logical
rules in a computer program, imitating Activation records
human reasoning

o First Rule-based System: MYCIN
experiment (Buchanan & Shortliffe,

RHS: Actions

Executing actions

1984)
(defrule soil-moisture-disaggregation (defrule RF-interference
(MEASUREMENT (spatial-resolution High) (accuracy Low)) (INSTRUMENT (lllumination Active) (frequency ?f) (spacecraft ?s)
(MEASUREMENT (spatial-resolution Low) (accuracy High)) ?i <- (INSTRUMENT (lllumination Passive) (frequency ?f) (spacecraft ?s)
=> =>
assert (MEASUREMENT (spatial-resolution High) (accuracy High modify ?i (RF-interference High
( ( (sp gh) Y g@ B)gnie gelva, \é01(7 gh))) 12
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evaluation of space systems
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Selva, D. & Crawley, E., 2013. VASSAR: Value Assessment of System Architectures using Rules. In Aerospace Conference, 2013 IEEE. Big Sky: IEEE.
Conference Best Paper Award. © Daniel Selva, 2017 13
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VASSAR — Automatic Generation of
Explanations

Delt i

» Science: (1) has higher science than (ref) because:

— (ref) partially misses subobjectives related to surface deformation and
hydrorcabon reservoir monitoring due to SAR flying at 600km
compromise orbit

e Cost: (1) also has lower cost than (ref) because:
— (ref) has to put a lidar at 600km (higher instrument and bus cost)
— Lower launch costs (1 Atlas 5 = $110M > 2xD7320 = $90M)

Selva, D., Cameron, B.G. & Crawley, E.F., 2014. Rule-based Slgstem Architectin% of Earth Observing Systems: The Earth Science Decadal
Survey. Journal of Spacecraft and Rockets. © Daniel Selva, 2017 14



KDO/AOS: leveraging knowledge in optimization

Hyper-heuristic

A
Non-domain data flow
A4
Domain Barrier
Non-domain data flow
v

Set of low level heuristics

Evaluation Function

Selection Frequency

* Multi-objective evolutionary optimization

Number of Function Evaluations

© Daniel Selva, 2017

» Domain-specific and domain-independent operators
» Knowledge-driven optimization
« Adaptive operator selection
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» Evolutionary algorithms such as
NSGA-II, e-MOEA and others are
very popular in design

population

* Evolve a population of solutions
(designs) by iteratively applying a

Termination
set of operators.
 Domain-independent operators
Step 2: Evaluate Step 5: Select preferred
- C rossover architectures in population archit;zt::f:tfzm last
N M Utatl On Step 3: Select Subset of preferred
architectures for new architectures
population
I
Parents . |
: . Step 4: Generate new

L] . [}
y Cross0ver FIDII'I‘tE ¥

Child rer
I

population

© NASAISTS spacesraft antenna (Wiki) 16
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Hyper-heuristics — Self-organizing optimization

o Use a set of operators/heuristics O

— Domain-independent: Different kinds of

Crossover, mutation, etc.
— Or Domain_specific| Create and evaluate

initial population
o Credit assignment: Measure performance of

terminate
each operator over time
Criteria

c; ¢+ = credit received by o; at iteration t continue

- Example Ci t (0.4 f(fp) —_ f(foi't) Selecttope:crfatorand
’ create offspring
» Operator selection: Assign solutions to | | .

. . . ncrement lteration valuate offspring and
operators proportionally to their quality (g; , tett1 incort inte paptiston
_ - - - A ¢
= guality of o; at iteration t) T R———

archive
Qitr1 = A —a) - qie +a-ci¢ v
qit+1 o amerator
pi,t+1 = Pmin + (1 - |0| ’ pmin) ' 0] I

a € [0,1] = adaptation rate
Pmin = Minimum selection probabifityniel Selva, 2017 17
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Hyper-heuristics outperform state-of-the-art EA

* We measured performance of 9 different HH (new and existing) on 26
different benchmarking problems (WFG, UF, DTLZ)

o Our experiments show that HH consistently outperform state-of-the-art EA
over wide range of problems

 HH are able to discover the operator(s) that work better for each problem

PM-OP-Do PM-SI-Do PM-CS-Do

0 - 15 : — 0.6 .
g 0.3 —DE |1 Tl 05}
c UM N .
= 0.25 — UNDX| |
@ —SPX 1t 0.4}
E —_—
5 02 PCX
L]
o 03¢
=015} ] |
E 054 L A At e i 0.2}
S 041 ] | A
L)) i
S 0.0 1\ ] g
= o
< 0 MR At e 0 : .

0 50 100 0 50 100 0 50 100

Epoch Epoch Epoch

Hitomi, N., and Selva, D., A Classification and Comparison of Credit Assi@r@%%@@ié@nm&ﬁobjective Adaptive Operator Selection. Under review in IEEE 18
Transactions on Evolutionary Computation.
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Domain knowledge is available — why not use it?

« Examples of chunks of expert
knOWI edge [:] Scientificadvantages
— Put synergistic instruments together | @ engineeringadvantages

. . R . Programmaticadvantages
— Putting 2+ high-energy instruments
together not good

— Don’t put optical instruments in
low-light orbits

— Avoid mechanical, thermal and
electromagnetic interferences
* Why not take advantage of the
domain-specific knowledge
available?

“MSynergies between
instruments

\ Cost of data cross-
registration

© Daniel Selva, 2017 19
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Incorporating domain knowledge Is not trivial

* Incorporating domain knowledge
can be done by means of

— Constraints Example of domain-specific operators
— Initial population

ADD-SYNERGY Adds instrument to a random orbit so as to capture a

- Opera'[OFS currently missed synergy
. REMOVE- Removes instrument from random orbit so as to
— Human in the Ioop INTERFERENCE eliminate a current interference
- Moves random instrument to a better orbit
° Our early experlments Showed that 55::3([){::5[10[15 Removes superfluous instrument from a random orbit
i iN- 1Fi ADD-TO-SMALL-SAT Adds random instrument to a random small satellite
USIng domaln SpeCIfIC Operators Iead REMOVE-FROM-BIG- Remqves random instrument from a random big
to faster but premature it —
convergence and lack of diversity
in the population L s — "
gzsoo [E—
% 2600 % 015
© 2400 g
Ezzou — el 8 ;
& 2000 ! g o —
*gmoo g ' o
S 1600} L ;l
' © Daniel Selva, 2017 e = 20

knowledge-intensive domain-independent  random-search knowledge-intensive domain-independent  random-search



Average credits earned in epoch
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Hyper-heuristics enable using domain knowledge

2
oo

— ADD-SYNERGY
— REMOVE-FROM-BIG-SAT

REMOVE-SUPERFLUOUS| ~

—— IMPROVE-ORBIT
—— ADD-TO-SMALL-SAT
Single-point crossover

Hyper-heuristics can use
domain-specific heuristics
to accelerate optimization
at beginning and then
shut them down to avoid
premature convergence!
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Outline for today: Duplex “knowledge transfer”

How can we represent and leverage the knowledge human experts have to improve

design of complex systems?
— VASSAR: scalable and traceable knowledge-intensive architecture evaluation
— KDOJ/AOS: self-organizing robust optimization of complex design spaces

* How can we help humans discover the high-level design features and trade-
offs driving the cost and performance of complex systems?

— i-feed: interactive extraction of high-level association rules and compact mental
models in design spaces

— cityplot: visualization of multi-objective mixed-integer design spaces
© Daniel Selva, 2017
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IFEED: Interactive Feature Extraction for Engineering Design
. Beyond optimization — “learning”
. Feature selection with association rule mining
. Feature structure and prediction with classification tree

Number of designs: 2604 Number of selected designs: 777

features order features | Resat data mining

Total number of designs: 2604

Selecled:777  Features:411

&Y dlligl ociva, £Zuli( 23
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It's not only about optimizing — also about “learning”

» Users of design optimization tools:
“Actual output of the tool is not the .
most important part; it’s all about
what is learnt while using the tool.” o

o What s it that they learn? N

— What metrics are more sensitive to ol 3
what design variables?

— What, if anything, do good (or bad)
architectures have in common?

— What combinations of variables drive
the formation of clusters in the design
space?

— How much of this is generalizable to
other concepts?

Mass (adimensional}
oy
=

© Daniel Selva, 2017 24
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Mass (adimensional) vs. # of 9's in R

o
=
1

n
=
T

Driving features

J:.
=]
T

Mass (adimensional)

e Feature: Any design variable or function of IS
several design variables oAt
— Driving feature: A feature that is |
consistently found in a class of designs R
more often than in the others Driving feature: min(#sensors, #computers)

o Goal: Automatically identify a small set of .
driving features with high predictive power

for goodness of a design (feature -
extraction problem)
— Spoiler alert: Driving features are rarely
just design variables;

2,000

1,000+

— instead, they tend to be high-level
combinations of multiple design variables

— Intermediate variables can help generalize

Driving features:

At least 3 orbits populated

No 2+ large instruments together

IRS + MWS + CHEM on same orbig5

© Daniel Selva, 2017
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Driving Feature Detection — Association Rules

« Given a binary feature space, association rule mining is a simple unsupervised
ML technique to find rules of the form: F = C where F and C are two features.

» Based on the following metrics:
_ S’LLPP(F)E% [ CU h }
— conf(F=C) = % @
_ lift(F = C) = “;’;(jf’cf) ¢ Dot v e

« Simple algorithm: Try all possible rules. A rule on a high-support feature that
has high confidence and high lift is a driving feature.

— What is high? Thresholds must be defined.

» Problem: the feature space is larger than the design space, possibly with infinite
representations (curse of dimensionality).

— Example: the number of features in a binary space of length N is 3V > 2V

© Daniel Selva, 2017 26
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|FEED Bringing the human into the Ioop

1. Formulation of candidate driving features

2.  Selection of a region of interest in the tradespace
(e.g. high performance, low cost, and low Pareto
ranking designs)

3. ldentifying a subset of driving features from the
candidate features, using association rule mining

4.  Building a compact form of classifier using
driving features as predictors and the region of
Interest as the label

5. Evaluation of the classifier.
Iterate if needed

© Daniel Selva, 2017

Formulate
candidate
drl\nng features

/Q

Select a region
of interest in
tradespace

/

candidates

Identify a subset of driving
@ features from the set of

]

@ Construct a classifier using

driving features

Are the levels
of
compactness
and accuracy
csatisfactory?

C

27
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1. Formulation of candidate driving features

» Formulation of candidate driving features using domain-specific C .

D
knowledge and insights obtained by observing the structure of —I—
the prOblem ) / candidate /L—

 Limits the feature space to be searched (number of all possible =
features is unbounded!) ® / L:g /
» Opportunities to search high level features

Identify a subset of driving

candidates
I; Instrument /; is present in at least one of the orbits l
I; Instrument /; is absent in all the orbits
. . 5 5 @ Construct a classifier using
InOrbit 0;,1; Instrument ; is present in orbit O; driving features
NotInOrbit 0, 1; Instrument /; is not present in orbit 0;
L, I,(1) Instruments /;, [; (and I;) are present together in any orbit
TogetherInOrbit 0y, 1, L. (I;) Instruments [, Iy (and [;) are present together in orbit 0; Are theflwels
o
L, I.(L) Instruments /;, [; (and I;;) are not present together in any single orbit ® co:padness
and accuracy
emptyOrbit 0; No instrument is present in orbit 0; satisfactory?
numOrbitUsed n The number of orbits that have at least one instrument assigned is n

C D

© Daniel Selva, 2017 28
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2. Selection of a region of interest

» Selection of the target region in the objective space
— Defining goodness function (e.g. expected utility, NPV, Pareto ranking)
— Visual selection of designs C o D
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3. ldentifying driving features

Start )

® Formulate /

drwmg features

Select a reglon
@ of interest in
lradespace

Identify a subset of driving
® features from the set of
candidates

1

@ Construct a classifier using
driving features

Are the levels

of

and accu racy
catisfactory?

C v

© Daniel Selva, 2017 30
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4. Building classification tree using driving features

e Classification trees introduce hierarchical structure and
priority information about driving features

— They are among the most human-understandable machine
learning models

« Driving features are selected as test nodes of the
classification tree. C4.5 algorithm recursively selects
features with largest information gain

IG(f) = H(Pi)Ino split — H(Py)|split f;

M
K
HGO == ) P ) Bilogz B
m=1 =1

CLAR_ERB absent Weight = 657

$50-600-SSO-DD empty Weight = 1,650

No

s
Bad - Weight =979

ACE_LID absent Weight = 680

[
Bad - Weight =23
o

es
Good (85%) - Weight = 563

CLAR_ERB in LEQ-600-polar-NA Weight = 94

o
Bad - Weight =0

$S0-800-5S0-DD empty Weight = 85

© Daniel e'R/a, 201es

Good - Weight = 65 Bad - Weight =20

Start )
v

Formulate
® candidate
driving features

Select a region
@ of interest in
tradespace

v

Identify a subset of driving
® features from the set of
candidates

T
Y

@ Construct a classifier using
driving features

Are the levels

® - -
and ;ccu racy
satisfactory?
( End )
31
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The Vision

Towards cognitive design assistants
and mixed-initiative design

© Daniel Selva, 2017 33
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So far, focus on making design tools smarter

« Emphasis in engineering design has been to make design
tools more intelligent = adaptive

o Adaptive...

— Formulations (variables)
® DESIgn VEC'[OI’ “ZoomS in” on Val'lab|eS (I. Y. Kim and O. L. de Weck, “Variable chromosome length genetic

algorithm for progressive refinement in topology optimization,” Struct. Multidiscip. Optim., vol. 29, no. 6, pp. 445-456, Jan. 2005)

— Models (objective function)
® Ba.yeS|an Opt|m|zat|0n (P. Frazier and J. Wang, “Bayesian Optimization for Materials Design,” in Information science for

materials discovery and design, vol. 225, T. Lookman, F. J. Alexander, and K. Rajan, Eds. 2015, pp. 45—75)

— Search strategies

® Parameter tun l ng (G. S. Tewolde, D. M. Hanna, and R. E. Haskell, “Enhancing performance of PSO with automatic parameter
tuning technique,” 2009 IEEE Swarm Intell. Symp., no. 1, pp. 67-73, Mar. 2009)

® Adapt|ve Opel’a'[OI’ SE|€CtI0n (E. Burke, G. Kendall, J. Newall, and E. Hart, “Hyper-heuristics: An emerging direction

in modern search technology,” in International series in operations research and management science, 2003, pp. 457—474)

© Daniel Selva, 2017 34
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Cast design tools as intelligent agents

Try to learn from intelligent systems
(e.g., robotics) community

— For unstructured and uncertain tasks,
robotics community has moved away

from autonomy to human-robot
collaboration and mixed initiative ‘
Currently, either 100% human or fully

automated design (autonomy)
Wait: Design IS a highly unstructured « ® O .

Design today

100% autonomous 100% manual

<

task+! 100% autonomous 100% manual

Propose mixed-initiative design#!! S _
Mixed-initiative Design

© Daniel Selva, 2017 35
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Mixed-initiative Design

 Informally: no clearly defined master-slave roles,
more balanced role allocation

e Shared plans and intentions

* Dynamic role/function allocation

e Shared attention and “common ground”

 Trust-building, collaborative interaction

e Embodied interaction

© Daniel Selva, 2017 36
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A plan to implement that vision

Improved human- New paradigm:
State of the art computer interaction Mixed-initiative
human-agent design

e Some intelligence in design e Self-explaining abilities
agents * New roles, balanced role ® Shared plans and intentions

¢ No dialogues or interactions allocation & mixed-initiative ® Dynamic role allocation &

e Static & unbalanced role e Meaningful dialogues & gradation of autonomy
allocation, emphasizing interactions e Shared attention & common
either 100% manual or e \erbal & non-verbal ground
100% automated design communication, embodied e Trust-building, collaborative

e Mostly static visual human- interaction embodied interaction
agent communication

present 3 years 6 years

© Daniel Selva, 2017 38
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« Self-explaining abilities
« Meaningful dialogues and
Interactions

* \erbal and non-verbal interactions
|  New roles
IBM-SoftBank — Design Analyst
— Design Critic
» Highlighted by NSF ESD PD as a
new promising area of research
— Still declined my CAREER!

IBM-Hilton

© Daniel Selva, 2017 39
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Summary and Concluding remarks

* Design of complex systems is a hard problem

 Emphasis In the past was design automation
— | still do a lot of that!

e More collaborative approaches are promising

* (Part of) the future of design Is cognitive design
assistants!

© Daniel Selva, 2017 40
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Current and future work

« KDO/AOS: Incorporating chunks of knowledge through
different implementations of soft constraints and repair
operators

 IFEED: Driving feature generalization — incorporating
Intermediate design attributes. Which visualizations work
better for experts/novices?

e Daphne (design assistant for Earth observing sats)
— Natural Language Processing Layer
— Design Analyst Role
— Design Critic Role
— Embodied interaction
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Thank you!
Questions?

System

Strategy and Product Development

for Complex Systems

Edward Crawley Bruce Cameron Daniel Selva

Eoreword by Norman R. Augustine
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Cityplot: visualizing multi-objective design spaces

Goal: Visualize design “landscape”
Handle large spaces
Discrete and continuous variables.
Multidimensional scaling to reduce design space to 2D
Bar plot to show normalized objectives

0.8

0.2
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Visualization for knowledge discovery: Challenges

» Visual analytics has become a popular
approach to knowledge discovery in
design

» Histograms, parallel coordinates, R
glyphs and scatter plots are often used »~—

» Challenges:

— Linking design space information
with objective space information

— Scaling to high-dimensional spaces
— Handling discrete variables

Hllay

Figure 1. a) Glyph Plot, b)Histogram Plots, c¢) Parallel Coordinates, d) Scatter

ARL Tradespace Visualizer by (Stump et al. 2004)
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o |f there were only 1 metric z and 2 decisions x,y we could easily view what the design
landscape looks like
* How can we do the same for higher dimension spaces and discrete variables?
— Multidimensional scaling to project design space to 2D
— Bar plots for objective space

o

© Daniel Selvy, 20
(represents high-dimensional design space)

1 47




Cornell University

Multidimensional scaling

Look at all pairs of designs as drawn
in the plane and in the hypercube

Multidimensional Scaling ) ' 2
_ argmin

7 - 7], - a(xi - %

zZ T
! i<j
/|
a

Locations in the Plane{: /]
Distance is L, in the plane |

Locations Qh the Hypercube

Use the distance for"speciﬁc'designs
Edit distance in earlier example

Make the difference in the distances
as close as possible on the average
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“Cities” are designs

“Roads” indicate distances between designs in decision space
“skyscrapers” are normalized objective function values

Cities are placed in the image to reflect the distances in the design space
Clustering indicates “families”

Can see “smoothness” of design space
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e Challenges:

— How do we define a distance function
in the design space?

— How do we choose a set to visualize?

» Entire space may not be
computationally feasible

» Even when feasible, too large set may
lead to messy plot

 If rely on sampling, results may
strongly depend on sampling

e Future work
— Automatic family characterization
— Add auto zoom-in feature
— Study distance functions in design
— Study effect of sampling
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