Data Driven Koopman Operator Theoretic Framework for Nonlinear System and Control Applications

Amit Surana

suranaa@utrc.utc.com, 860-610-7690

United Technologies Research Center,

East Hartford, CT, 06118

UTC IASE Seminar Series, University of Connecticut 3rd Oct, 2016

Data Driven Applications @UTC

- Service Technologies
- Aerospace prognostics and health management
- Building energy diagnostics and prognostics
- Building security
- Autonomy Intelligence Systems

Interdisciplinary approach

Dynamical Systems Framework

*Spectral Operator Theory Methods in Applied Dynamical Systems, I. Mezic, 2016

hnologies Center

Koopman Based Nonlinear Systems & Control Applications

Multi Input Multi Output System

Explore *data driven Koopman operator framework* to facilitate nonlinear estimator/controller design

Koopman Operator Theoretic Framework

Operator Theoretic: Infinite dimensional but linear

Function Space: $F = \{\psi: \psi: M \to C\}$ Koopman (semi)group, $U^t: F \to F$ $(U^t\psi)(x) = \psi(\Phi(t,x))$

Spectra:

$$(U^t\phi)(x)=e^{\lambda t}\phi(x)$$

5th order 10th order

20th ordei 40th ordei

2

 $\lambda\,$ -Koopman eigenvalues (KEs) determine oscillatory behavior and growth/decay rate

Mauroy & Mezic, 2014

x1 0

Koopman spectra (Mezic et. al.)

- Contains eigenvalues of linearization for fixed points, Floquet exponents for limit cycle, ...
- Intersection of level sets of KEFs encode solutions
- Basins of attraction, isostables, ergodic partitions, etc. can be characterized in terms of KEFs

Some Remarks

➤Linear system

 $\dot{x} = Ax$

Let w_i , λ_i are left eigenvector / eigenvalue of A

 $\phi_i(x) = \langle x, w_i \rangle$ is KEF with KE λ_i

 $U^t \phi_i(x_0) = e^{\lambda_i t} \phi_i(x_0)$

$$\Rightarrow x(t, x_0) = \sum_{i=1}^d e^{\lambda_i t} \phi_i(x_0) v_i$$

There are infinite KEFs/KEs

$$\begin{aligned} \phi_1 &\to \lambda_1 \\ \phi_2 &\to \lambda_2 \end{aligned} \qquad \phi_1 \phi_2 \to \lambda_1 + \lambda_2 \end{aligned}$$

Koopman Mode Decomposition (KMD)

 $\dot{x} = f(x) \rightarrow \Phi(t, x_0)$

$$U^t \phi = \phi \big(\Phi(t, x_0) \big) = e^{\lambda t} \phi(x_0)$$

Observable/output: $h(x): M \to R^p$

$$h(x) = \sum_{i=1}^{\infty} \phi_i(x) v_i, \qquad v_i \in C^p$$

KMD (Mezic, 2005)

$$\Rightarrow h(\Phi(t, x_0)) = \sum_{i=1}^{\infty} e^{\lambda_i t} \phi_i(x_0) v_{i_{\text{Koopman Modes (KMs)}}}$$

- KEFs/KEs are intrinsic to dynamics, KMs are specific to an observable
- KMs capture correlations between different measurements

Koopman in Discrete Time

Map $x_{k+1} = f(x_k)$ Koopman $(K\psi)(x) = \psi(f(x)),$ $h(x_k) = \sum_{j=1}^{\infty} \lambda_j^k \phi_j(x_0) v_j$ $(K\phi_j)(x) = \lambda_j \phi_j(x)$

>Along periodic orbit of linear/nonlinear system: KMD is equivalent to Discrete Fourier Transform (DFT)

$$S = \{x_0, \cdots, x_{P-1}\}, \quad x_t = \sum_{\substack{j=0\\ \text{Koopman}\\ \text{eigenvalues}}}^{P-1} v_j, t = 0, \cdots, P-1$$

 $ightarrow KMD \equiv Generalized Fourier Analysis (Chen et. al., 2012)$

	Discrete Fourier Transform	KMD
Captures modal growth/decay rates	No	Yes
Non-periodic data	Slow decay	Faster decay
Length of data	Sensitive	Less sensitive
Smallest frequency resolved	Length of data	Theoretically no lower bound

Compared to Proper Orthogonal Decomposition (POD), KMD

- more effectively decouples dynamics at different time scales (Susuki et. al. 2011)
- provides evolution equation for observables

Numerical Approaches for KMD

 $x_{k+1} = f(x_k)$

🧷 Мар

 $\Rightarrow \Phi(\Delta t, x), \Phi$ is flow map for an ODE

Approach	Remarks
Generalized Fourier/Laplacian Analysis (Mezic, 2012)	Computes KMs using time averages by subtracting most unstable mode; requires knowledge of KEs
Dynamic Mode Decomposition (DMD) and variants (Rowely et al., 2009; Schmid, 2010; Javanovic et al., 2013, Tu et al., 2013)	Based on Arnoldi type methods; necessary/sufficient conditions exist for it to recover KEs, KEFs, and KMs
Extended DMD (Williams et al., 2015)	Galerkin method, computes KEs, KEFs, and KMs using chosen dictionary or kernel function

Dictionary:
$$D = \{\psi_1, \dots, \psi_N\}, \psi_i \colon M \to C$$

let $h = \psi^* a$, $\overline{h} = \psi^* \overline{a}$ where $\psi = (\psi_1, \dots, \psi_N)^*$
 $\overline{h}(x) \approx (Kh)(x)$
 $\Rightarrow \psi^* Ka \approx (\psi \circ f)^* a$

Numerical Approaches for KMD: Extended DMD

1

Compute
$$G = \Psi^* \Psi$$
, $A = \Psi^* \overline{\Psi}$, where
 $\Psi = \begin{pmatrix} \psi^*(x_1) \\ . \\ \psi^*(x_M) \end{pmatrix}$ and $\overline{\Psi} = \begin{pmatrix} \psi^*(\overline{x}_1) \\ . \\ \psi^*(\overline{x}_M) \end{pmatrix}$

Let $\{x_m, \bar{x}_m = f(x_m)\}_{m=1}^M$ be obtained from simulations /experiments (no need for equations)

2. Compute eigenvalues λ_i , right eigenvectors ξ_i of $\overline{K} = G^{\#}A$

3. KEfns are $\phi_i(x) \approx \psi^*(x)\xi_i$ with KEs λ_i , $i = 1 \cdots$, N

4. KMs are rows of $V_x \approx B_x W$, $V_h \approx B_h W$ where, $x = B_x \psi$ and $h(x) = B_h \psi$ and W is matrix with columns as left eigenvectors of \overline{K}

(Williams et al., 2015)

Challenges	Remarks
High dimensional state space	Kernel EDMD (Williams et al., 2016)
Choice of basis/kernel	Exploit machine learning concepts
Where to sample data and how much	System ID concepts
Limited data in experimental setting	Enrich data (e.g. Taken's embedding)

KMD/DMD Applications

Modal decomposition/time series analysis

- Fluid mechanics (Schmid 2009, Rowley et. al. 2009, Mezic 2012, Bageri 2014)
 Building energy modeling (Eisenhower et. al 2010, Georgescu & Mezic, 2015)
- Video background & foreground separation (Grosek & Kutz, 2013)
- Compressed sensing/sparsity/sensor placement (Brunton et. al, 2013)
- Anomaly detection in power grid (Susuki & Mezic, 2014)
- Dynamic texture modeling (Surana, 2015)
- Data fusion (Willams et. al, 2015)
- Multi resolution DMD (Kutz, 2015)
- Coherent patterns extraction in neurological data (Brunton et. al, 2015)
- Classification, forecasting, and fault detection/isolation (Surana et. al, 2016, in preparation)

Systems/control applications

Perron-Frobenius (adjoint of Koopman)
 stability/basins of attraction (Vaidya & Mehta, 2008; Wang & Vaidya, 2010)
 observability gramian (Vaidya, 2007)

Koopman:

.

•stability/basins of attraction (Mauroy & Mezic, 2014)

- •differentially positive systems (Mauroy et. al, 2015)
- •control using Koopman invariant subspaces (Brunton et. al, 2016)

•DMD with control (Proctor et. al. 2016)

Koopman Observer Form: Preliminaries

- If $\phi(x), \lambda$ is KE/KEF, then so is $\overline{\lambda}, \overline{\phi}(x)$, and $L_f \phi = f. \nabla \phi = \lambda \phi, \qquad L_f \overline{\phi} = \overline{\lambda} \overline{\phi},$ $L_f \begin{pmatrix} Re(\phi) \\ -Im(\phi) \end{pmatrix} = Q_\lambda \begin{pmatrix} Re(\phi) \\ -Im(\phi) \end{pmatrix}, \qquad Q_\lambda = |\lambda| \begin{pmatrix} \cos \arg \lambda & \sin \arg \lambda \\ -\sin \arg \lambda & \cos \arg \lambda \end{pmatrix}$
- $F^n = span\{\phi_1, \dots, \phi_n\}$, define $T(x) = (\hat{\phi}_1(x), \dots, \hat{\phi}_n(x))^*: M \to R^n$
 - $\hat{\phi}_i = \phi_i$, if ϕ_i is real valued
 - $(\hat{\phi}_i, \hat{\phi}_{i+1}) = (2Re(\phi_i), -2Im(\phi_i))$ if ϕ_i is complex valued
- For real valued observable $h(x) \in F^n$

$$h(x) = \sum_{i=1}^{n} \phi_i v_i = CT(x)$$

where, $C = [v_1 \dots Re(v_i) - Im(v_i) \dots] \in R^{p \times n}$

$$L_{f}T(x) = \Lambda T(x), \qquad \Lambda \in \mathbb{R}^{n \times n} \text{ block diagonal}$$
$$-\Lambda_{i,i} = \lambda_{i}, \qquad -real \ \lambda_{i}$$
$$-\begin{pmatrix}\Lambda_{i,i} & \Lambda_{i,i+1} \\ \Lambda_{i+1,i} & \Lambda_{i+1,i+1} \end{pmatrix} = Q_{\lambda}, \qquad -complex \ \lambda_{i}$$

Whited Technologie Research Center

Input Output Koopman Observer Form (IOKOF)

Let there exists a finite set of KEFs

 $F^{n} = span\{\phi_{1}, ..., \phi_{n}\}$ of autonomous part $\dot{x} = f(x)$, such that $x, h(x) \in F^{n}$. Then using $T(x) = (\hat{\phi}_{1}(x), ..., \hat{\phi}_{n}(x))^{*}$

Low dimensional

$$\dot{x} = f(x) + \sum_{l=1}^{m} g_l(x)u_l \xrightarrow{z = T(x)} \dot{z} = Az + \sum_{l=1}^{m} \tilde{g}_l(z)u_l$$

$$y = h(x) \qquad y = Cz$$
Where,
$$-A = \Lambda \rightarrow KEs$$

$$-C \rightarrow KMs \text{ for } h(x)$$

$$-C^x \rightarrow KMs \text{ for } x$$

$$-\tilde{g}_l(z) = L_{g_l}T(x)\Big|_{x = C^x z}$$

A. Surana and A. Banaszuk, Linear observer synthesis for nonlinear systems using Koopman operator framework, NOLCOS, 2016. A. Surana, Koopman Operator Based Observer Synthesis for Control-Affine Nonlinear Systems, accepted to appear in CDC 2016.

United Technologies Research Center

This page contains no technical data subject to EAR or ITAR.

High dimensional

Special Cases of IOKOF

$$\begin{aligned} x = f(x) + \sum_{l=1}^{m} g_{l}(x)u_{l} \xrightarrow{z = T(x)} \dot{z} = Az + \sum_{l=1}^{m} \widetilde{g}_{l}(z)u_{l} \\ y = h(x) & y = Cz \end{aligned}$$

$$\begin{aligned} u = 0 & Lg_{l}T(x) = b_{l} + B_{l}T(x) & ||\Phi(z_{1}, u) + \Phi(z_{2}, u)|| \\ \leq \gamma ||z_{1} - z_{2}|| \\ kMs & \Phi(z, u) = \sum_{l=1}^{m} \widetilde{g}_{l}(z)u_{l} \end{aligned}$$

$$\begin{aligned} \text{Linear} & \text{Bilinear} & \text{Liptchitz} \\ \dot{z} = Az & \dot{z} = Az + B_{0}u + \sum_{l=1}^{m} (B_{l}z)u_{l} & \dot{z} = Az + \Phi(z, u) \\ y = Cz & \text{where, } B_{0} = [b_{1} \dots b_{m}] \in R^{n \times m} \end{aligned}$$

United Technologies Research Center

Linear KOF

Nonlinear Observability Characterization

$$\begin{array}{c} \dot{x} = f(x) \\ y = h(x) \end{array} \xrightarrow{x, h(x) \in F^n} \dot{z} = Az \\ y = Cz \end{array}$$

If pair (A, C) is observable \Rightarrow nonlinear system is nonlineary observable "indistinguishability"

Observer Design: Luenberger/Kalman

$$\dot{\hat{z}} = A\hat{z} + L(y - C\hat{z}) \longrightarrow \hat{x} = C^{x}\hat{z}$$

$$e_z = z - \hat{z},$$

$$\dot{e_z} = (A - LC)e_z \to 0$$

$$e_x = x - \hat{x} = C^x e_z \to 0$$

Compared to	KOF based approach
EKF	-"more global" convergence
Observer forms (Krener et. al)	-immersion rather than diffeomorphism -more readily computable -data driven/equation free
Carleman linearization	-may provide more compact representation

Nonlinear Estimation Application: Example I

$$x_{k+1} = f(x_k) = \begin{pmatrix} \rho x_{1,k} \\ \mu x_{2,k} + (\rho^2 - \mu) c x_{1,k}^2 \end{pmatrix}$$
$$y_k = h(x_k) = x_{1,k}^2 + x_{2,k}$$

$$\begin{array}{ll} x, h(x) \in span\{\phi_1, \phi_2, \phi_3\} & A = \begin{pmatrix} \rho & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \rho^2 \end{pmatrix} \\ \phi_1 = x_1, \to \rho & C = (0 & 1 & 1+c) \\ \phi_2 = x_2 - cx_1^2, \to \mu & C = (0 & 1 & 1+c) \\ \phi_3 = x_1^2, \to \rho^2 & C^x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & c \end{pmatrix} \end{array}$$

Superior performance than EKF

Nonlinear Estimation Application: Example II

$$x_{k+1} = f(x_k)$$

= $\begin{pmatrix} x_{1,k} - x_{2,k}dt \\ x_{2,k} + dt (x_{1,k} - x_{2,k} + x_{1,k}^2 x_{2,k}) \end{pmatrix}$
 $y_k = h(x_k) = x_{1,k}^2 + x_{2,k}$

Used Kernel extended DMD (Williams, et. al, 2016) for computation of KE/KEF/KM

Superior performance than EKF

KOF Based Sensor Selection

Mutual information based metric

- Enables use of linear concepts for Msuch as based on
 - Observability gramian
 - Error covariance (algebraic Riccati Eqn)
- Desirable properties of metrics:
 - Incorporates model error/sensor noise: Q, R
 - Invariant to sensor scaling: $y \leftarrow Sy, M$ does not change
 - Optimization amenable to efficient heuristics

$$M = MI(y_{SS}^{u}, y_{SS}^{o}) = \frac{1}{2} \log \frac{|P_{oo}||P_{uu}|}{|P_{oo} - P_{ou}|}_{P_{ou} - P_{uu}}$$

$$y_{ss}^{o} \sim N(\cdot, P_{oo}), P_{oo} = C^{o} P_{ss}^{z} (C^{o})' + R^{oo}$$

$$y_{ss}^{u} \sim N(\cdot, P_{uu}), P_{uu} = C^{u} P_{ss}^{z} (C^{u})' + R^{uu}$$

$$P_{ou} = C^{o} P_{ss}^{z} (C^{u})' + R^{ou}$$

 P_{ss}^{z} – Steady state error covariance (solution of discrete ARE for pair (*A*, *C*^o, *Q*, *R*^{oo})

Submodularity concepts for scalable optimization

Data Driven Sensor Selection Application

United Technologies Research Center

Dynamical Systems Framework

United Technologies Research Center

Koopman Based Time Series Analysis

Temporal data $50 \ 100 \ 150 \ 200 \ 250 \ 300 \ 350 \ 400 \ 450 \ 500 \ 50 \ 100 \ 150 \ 200 \ 250 \ 300 \ 350 \ 400 \ 450 \ 500 \ 450 \ 450 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 450 \ 500 \ 450 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 500 \ 450 \ 450 \ 450 \ 450 \ 450 \ 450 \ 450 \ 450 \ 450 \ 450 \ 450 \ 450 \ 450 \ 4$

How is it being done today?

PCA/POD, Fourier, Bayesian Nets (BN), Neural nets..

What are the deficiencies?

Poor scalability due to discretization

Hand crafted feature extraction to reduce dimensionality

•Spatiotemporal characteristics often not captured: limited ability to forecast & capture transients/nonlinearities

Enablers in machine learning

•Mixed BN, Dynamic BN, Recurrent Neural nets, Deep Learning,...

Use KOF as generative model and combine with machine learning/classical FDI techniques

Time Series Prediction/Forecasting/Anomaly Detection

New England Power Grid Model (Kundur, 1994)

- initial conditions
- Obtain normal model: time delay embedding, exact DMD
- Test data with/without fault

A. Surana, Koopman operator framework for time series analysis, to be submitted to J. Computational Dynamics.

Metrics for Koopman Based Representation

Metrics for linear systems

1. Solve Lyapunov Eqn. $A^{T}PA - P = -C^{T}C$ to obtain $P = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix}$ where $A = \begin{pmatrix} A_{1} & 0 \\ 0 & A_{2} \end{pmatrix}$, $C = \begin{bmatrix} C_{1} & C_{2} \end{bmatrix}$ 2. Compute cosine of subspace angles $\cos^{2} \theta_{i} = ith \ eigenvalue(P_{11}^{-1}P_{12}P_{22}^{-1}P_{21})$ 3. Martin distance

$$M(S_1, S_2) = \sqrt{-ln \prod_{i=1}^{n} \cos^2 \theta_i}$$
 Martin, 2000

Koopman Based Automatic Feature Generation Framework

Time Series Classification Application

Human Activity Recognition: Healthcare, security, fitness,..

- UCI data (Anguita et al., 2012) : Walk, Walk up, Walk down, Sit, Stand, Lay
- Training: 30 subjects
- Testing: Different subjects than in training data

89% accuracy-550 features (KOF based automatic feature generation)

*manual expert feature (e.g. statistical, FFT based etc.) generation

A. Surana, Koopman operator framework for time series analysis, to be submitted to J. Computational Dynamics.

Cloud Based/Streaming Computations

Model learning/update	DMD and variants relying on matrix algebra (e.g. SVD) Distributed SVD Streaming: Incremental DMD (Hemati et. al. 2014)/ SVD (Brand, 2006)
Classification/clustering/ indexing & retrieval	 Distance Matrix computation Pairwise Lyapunov eqn/Linear program Classical machine learning techniques (e.g. k-means, SVMs) Distributed MLLib
Estimation/Forecasting/ Anomaly Detection	Kalman filter on reduced KOF •Centralized/distributed •Recursive

Ongoing Work

►IOKOF identification

$$u_{1}, u_{2}, \dots, u_{T} \xrightarrow{\dot{x}} f(x) + \sum_{l=1}^{m} g_{l}(x)u_{l} \xrightarrow{x_{1}, x_{2}, \dots, x_{T}} \underbrace{\dot{y}_{1}, y_{2}, \dots, y_{T}}_{y_{1}, y_{2}, \dots, y_{T}} \xrightarrow{\dot{z}} = Az + B_{0}u + \sum_{l=1}^{m} (B_{l}z)u_{l} \xrightarrow{y_{1}, y_{2}, \dots, y_{T}} y_{T}$$

Truncation accuracy vs. size tradeoff

Comparison with other approaches (Carleman linearization, approximate linearization etc.)

Engine control applications

Ongoing Work

➢Non-stationary data (with Prof. Igor Mezic@UCSB)¹

 $\begin{aligned} x_t &= f(x_{t-1}, t), \\ y_t &= g(x_t) \end{aligned}$

For periodic/quasi periodic time dependence Floquet theory to extend notion of KMD

Data driven causality vs. correlation (with K. Srivastava@UTRC)

 $\begin{array}{l} x_t^1 = f(x_{t-1}^1), \quad y_t = g(x_t^1, x_t^2) \\ x_t^2 = f_2(x_{t-1}^1, x_{t-1}^2) \end{array}$

Use Koopman representation and information theoretic measures

➤Crowd video analysis (with Prof. Igor Mezic@UCSB)²

1. I. Mezic,, & A. Surana, Koopman Mode Decomposition for Periodic/Quasi-periodic Time Dependence, NOLCOS, 2016.

2. A. Surana & I. Mezic , Dynamical systems framework for crowd video analysis, in preparation.

Summary

- Introduced Koopman Observer Form
- Complements and readily combines with controls and machine learning techniques
- Data driven (model free), computable
- Amenable to scalable/cloud based/streaming computations
- Preliminary results promising, much more work needed

Thank you, Questions?