

Design of Emerging Engineered Material Systems

Dr. Wei Chen

Wilson-Cook Professor in Engineering Design Director, Predictive Science & Engineering Design (PS&ED) Cluster Professor, Department of Mechanical Engineering Industrial Engineering & Management Science Chair of Research Council, Segal Design Institute

Integrated DEsign Automation Laboratory (IDEAL)

http://ideal.mech.northwestern.edu/

Integrated DEsign Automation Laboratory (IDEAL)

Develop advanced computational and statistical techniques to support engineering design, manufacturing, and product realization.

Major Research Areas

Uncertainty Quantification $y^{e}(\mathbf{x}) = y^{m}(\mathbf{x}, \mathbf{\theta}) + \delta(\mathbf{x}) + \varepsilon(\mathbf{x})$

Multidisciplinary Design Optimization

Robust Shape & Topology Optimization

Design of Emerging Material Systems

Enterprise-Driven Decision Based Design

Opportunity in Materials Design

Courtesy of Y-H Chung

- New materials
- Multiple material constituents
- Superior properties

Two Types of Nanostructured Materials Design

Microstructural Morphology

Polymer Nanocomposites

Metamaterial Topology

Thin-Film Solar Cell

Multiscale Structures from Additive Manufacture

Sophisticated macro structures enabled by additive manufacturing

Benefits of multiscale latticed structures:

- Additional weight reduction
- Increased surface area **
- Desired permeability
- Another design dimension *

Lockheed Martin

Boeing shows off Microlattice material that is 99.99% AIR

Microstructural Materials:

Spatial arrangement of local microstructure features at various constituent length scales highly influence overall properties

Design of Polymer Nanodielectric Systems (NSF/DEMS, Chen-Brinson-Schadler)

Application of Dielectric Material

- Wires and cables that carry electrical current
- Insulation in heavy machinery
- Insulation material in capacitors

Design Criteria

- High dielectric constant, low dielectric loss
- High breakdown strength (complicated physical model)
- High strength endurance

Design of Tire Polymer Nanocomposite (Goodyear)

FEA Model

- Complexity: multidisciplinary, multiscale materialsstructure system, expensive simulations
- Stochasticity: uncertainties induced by materials structural heterogeneity, manufacturing imperfection, and lacking of knowledge
- Manufacturability: mapping between processing and structure; manufacturability constraints; top-down vs bottom-up processes
- Material Informatics: exploration of vast materials
 database & computational models

Need for Stochastic Characterization and Prediction

Smaller volume element → larger uncertainty in constitutive relations

Statistical Volume Element (SVE)

- Simulation High uncertainty Representative Volume Element (RVE) Simulation Simulation Low uncertainty
- The uncertainty of certain behavior (fracture, failure, fatigue, etc.) is large.
- Cell averaging is not applicable.

Greene, M. S., **Xu, H.**, Tang, S., Chen, W., Liu, W. K., "A generalized uncertainty propagation criterion from benchmark studies of microstructured material systems", *Computer Methods in Applied Mechanics and Engineering*, 254, pp 271-291, 2012.

Integrated DEsign Automation Laboratory

Greene, M.S. et al. CMAME 2011.

Processing-Structure-Property Relation Chain

EAL

Rapid assessment of design performance Design Representation Small set of controllable microstructure design variables

Stochastic Characterization & Reconstruction of Microstructure Data driven
designDesignSynthesis
DesignEvaluationSynthesis

Machine learning of key microstructure characteristics

Effective exploration of high dimensional irregular design space

Statistical Characterization and Reconstruction

Correlation Functions:

Ch.: Morphology Probability space **Rec. :** Matching via iterative pixel swapping

Yu et al., CAD, 2013

Random Field (RF):

Ch.: Modeling the RF of the morphology **Rec.:** Level-cutting the RF

Integrated DEsign Jiang et al, J. Microsco, 2014 Automation Laboratory

Descriptor-Based:

Ch.: Distribution of physical descriptors **Rec.:** Matching descriptors' distribution

Xu, et al., JMD, 2014

Supervised Learning:

Ch.: Morphology — Conditional probability **Rec.:** Sampling from the conditionals

 $P(y|X) \rightarrow P(y|N)$

Reconstruction

					•
1	2	3			

Original Image (X) Bostanabad, et al, 2045

Automation Laboratory

Descriptor-based Reconstruction

Computational Cost Comparison

Size (voxel)	Correlation Function	Descriptor
100 ³	170 hr	< 3 min
300 ³	Memory issue	< 2 hr

- Low computational cost
- High accuracy
- Clear physical meaning

Statistically Equivalent Microstructures

Stochastic reconstruction of 2D isotropic structure

Stochastic reconstruction of 3D isotropic structure

Characterization and Reconstruction (C&R) via Supervised Learning

GOAL: Development of a Generic and Model-based C&R Method

Bostanabad R., et al. *Acta Materialia*, DOI. 10.1016/j.actamat.2015.09.044, 2015.

- Characterize by learning the full joint distribution of the constituents
- **Reconstruct** by sampling from the learned distribution

$$f(\mathbf{X}) = f(X_{11})f(X_{12}|X_{11})f(X_{13}|X_{11},X_{12})\cdots f(X_{n_1n_2}|X_{11},X_{12},\dots,X_{n_1(n_2-1)})$$

= $f(X_{11}|\mathbf{X}^{(<11)})f(X_{12}|\mathbf{X}^{(<12)})f(X_{13}|\mathbf{X}^{(<13)})\cdots f(X_{n_1n_2}|\mathbf{X}^{($

Where $X^{(\langle ij \rangle)}$ is the set of all the pixels in X ordered before X_{ij} .

 M_{ij} : Neighborhood of X_{ij}

To make the approximation of f(X) tractable, X is assumed to be a form of stationary Markov random field (MRF):

- Locality: $f(X_{ij}|\mathbf{X}^{(<ij)}) = f(X_{ij}|\mathbf{M}_{ij})$ for a sufficiently large (causal) neighborhood \mathbf{M}_{ij} .
- Stationarity: $f(X_{ij}|M_{ij})$ does not depend on pixel location (i, j).

Applications to Various Material Systems

Machine Learning for Identifying Key Descriptors

Structural Equation Model (SEM) for Key Descriptor Identification

Reduce dimension by discovering latent microstructure features ${}^{\bullet}$

Zhang, Y., TMS IMMI, 2015

Reduced Descriptor Set for Tire Material

Initial Statistical Descriptor Set (56)

Composition	n 🗅 VF	Key Descriptor set
Dispersion	 Nearest boundary distance Nearest center distance Local VF of Voronoi cells Cluster number Filler Surface Area Matrix Surface Area Orientation 	Microstructure Design Variables:
Geometry	 Pore size Area Equivalent Radius Compactness Aspect ratio Roundness Eccentricity Rectangularity Tortuosity 	 Volume fraction VF Elongation ratio e_l Nearest distance r_d

Design Evaluation: Processing-Structure Mapping

Integrated DEsign Automation Laboratory Hassinger I., Li X., et al, J. Mater. Sci, 2016

Data Driven Design Synthesis

Microstructure Design Variables:

Cluster number N
 Volume fraction VF
 Elongation ratio e₁

 \Box Nearest distance r_d

Design Objective

(multi-objective optimization):

- □ Min L (Min wear)
- □ Max P (Max wet traction)
- Max H (Min rolling resistance)

Integrated DEsign Automation Laboratory Xu, et al., JMD 2014.

NanoMine: Polymer Nanocomposite Data Resource

NanoMine Data Resource					
Integrated Web Interface & Data Exchange					
Database	Analytics/Design Tools	Computation			
Curation	Microstructure	First Principles &			
Exploration	Characterization & Reconstruction	Heuristic Models			
Visualization	Materials Concept	Continuum Models			
Verification and	Selection				
Uncertainty	Data Analytics &				
Dissemination	Optimization				
Processing Structure Properties					

Using NIST Material Data Curator

Nanomine.northwestern.edu

Integrated DEsign Automation Laboratory

Database

- Curate and explore nanocomposite database with experimental and computation data
- Material Data Curator (NIST) with data template tailored for nanocomposites

Analysis/Design Tools

- MCR toolkit to calculate physical descriptors and reconstruct 2D/3D microstructure
- Data mining tools for processing, • structure and property correlation and material design

Computation

- Heuristic and DFT models for polymer and surface chemistry
- Finite element modeling on thermomechanical and dielectric properties Zhao, et al., APL Materials, 2016, 26

Stochastic Multiscale Analysis and Design

GOAL: Multiscale Design of Material Systems with Targeted Properties

Challenges:

- The bottom-up approach is not tailored for material design and requires much time and effort.
- Coupling the computational models in the top-down approach is not trivial what information needs to be passed up from fine to coarse scales?

Accounting Local Microstructural Variations and Defects

Defects and Anomalies

- Local morphological changes (such as volume fraction) can drastically affect the material performance.
- Monitoring local and global changes are essential to quality control.

Response Surface of Constitutive Relations for Hyperelasticity

GOAL: Learn the macroscopic constitutive law of a **class** of microstructures, i.e., find f in $W = f(\overline{E}, m)$.

Descriptors		
VF	[2, 45]%	
μ_{nn}	[0.3, 0.5] <i>mm</i>	
е	[1,5]	
Ν	[40, 100]	
\bar{E}_{11}	[-10, 150]%	
\overline{E}_{22}	[-10, 150]%	
\bar{E}_{12}	[-40, 40]%	

RVE 1

Metamaterial Design: Light-trapping for thinfilm solar cell

Conventional bulk solar cell

Wikipedia

Flexible

C. Adrian et. al, Nature Materials, 2011 Transparent

C.C. Chen et. al., ACS Nano, 2012

Topology optimization for highly-efficient nanophotonic lighttrapping structure for thin-film solar cells

Optimizing the material distribution in elementised design space with periodicity constraint

C. Wang, S. Yu, W. Chen, C. Sun, Scientific Report, 2013 S. Yu, C. Wang, C. Sun, W. Chen, Struct. Multidisc. Optim., 2014

IDEAL Integrated DEsign

Automation Laboratory

GA and SIMP based Topology Optimization of the Periodic Light-Trapping Structures

THERE IS A CONTRACT OF THE PARTY OF THE PART

Topology optimization of the light-trapping structure at single incident wavelength using GA and SIMP

Integrated DEsign Automation Laboratory

33

Validation of cost-effective, high-performance nanophotonic structures for efficient light control

Significant enhancement in light absorption efficiency has been achieved in the optimized nanophotonic light-trapping structure

More than a week to pattern the optimal design on a 4 inch wafer using the state-of-the-art e-beam lithography (EBL), costs thousands of dollar by accounting for the total cost of ownership (TCO)

C. Wang, S. Yu, W. Chen, C. Sun, Sci. Rep., 2013 S. Yu, C. Wang, C. Sun, W. Chen, Struct. Multidisc. Optim., 2014 Integrated DEsign Automation Laboratory

34

Nanophotonic structures in nature

Cost-Effective Bottom-up Fabrications

Biological quasi-random nanostructures from selfassembly of biological medium

S. Yu, C. Wang, B. Dong, Z. Jiang, J. Zi, W. Chen, C. Sun, Submitted, 2015

Functional quasi-random nanostructures from **bottom-up processes**:

Polymer phase-separated anti-reflection coating

Nano-wrinkled LED

Particle assembling structural color

Adv. Mat., 2010

Spectral density function (SDF)

Fourier transformation of structure
$$Z(\mathbf{r})$$

 $F\{Z(\mathbf{r})\} = A_{\mathbf{k}} \cdot e^{i\phi_{\mathbf{k}}},$

Spectral density function SDF calculation $f(k) = (A_k \cdot e^{i\phi_k}) \cdot (A_k \cdot e^{-i\phi_k})/C$

SDF describe the structure spatial correlation in frequency domain

Best Paper Award, 42th ASME Design Automation Conference, for paper Yu et al. "Characterization and Design of Functional Quasi-Random Nanostructured Materials using Spectral Density Function"

Spectral Density Function for Non-deterministic Quasi-Random Structure Representation

Spectral density function (SDF):

1D function of Fourier components distribution over spatial frequency

Science, 2007

Yu, et al. IDETC, 2016

Integrated DEsign Automation Laboratory

38

Spectral Density Function vs Correlation Function

- SDF captures the differences between structures more clearly than the conventional 2-point correlation function.
- Smaller number of parameters and fast reconstruction enable rapid explorations of optimal fabricable nanostructures


```
Integrated DEsign
Automation Laboratory
```

SDF based computational design methodology of quasirandom nanostructure materials

40

Designing quasi-random light-trapping nanostructure assuming a step SDF (single-wavelength)

$$k_a^* = 0.0029$$
 nm⁻¹, $k_b^* = 0.0030$ nm⁻¹, $\rho^* = 62\%$, $t_1^* = 75$ nm

Scalable fabrication of quasi-random nanostructure using wrinkle lithography and the corresponding SDF

Prof. Teri W. Odom Group

Control wrinkle wavelength λ_w

Wrinkle

patterning

Control filling ratio ρ and depth t_1

Processing-structure mapping and SDF derivation for wrinkle pattern

1DEAL Integrated DEsign

Integrated DEsign Automation Laboratory

43

Concurrent design of quasi-random light-trapping nanostructure fabricated by wrinkle lithography

 $\max_{Z} A(Z(k_m, \rho, t_1), t, \lambda); \qquad k_m^* = 0.0018 \text{nm}^{-1}, \ \rho^* = 52\%, \text{ and } t_1^* = 210 \text{nm}$

44

Closure

- Materials system is a complex engineered system that can benefit from state-of-the-art computational design methods.
- Stochasticity plays a critical role in material behavior prediction.
- Design and manufacturability are highly coupled in materials design.
- Big data and lack of data co-exist in materials informatics.

Acknowledgements

NU Collaborators: Cate Brinson, Cheng Sun, Teri Odem, Jian Cao, Wing Kam Liu, Sinan Keten

