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Opportunity in Materials Design

Ice “Reinforced” Ice

Dropped Dropped

Courtesy of Y-H Chung

Advanced 
Materials 
System

 New materials 
 Multiple 

material 
constituents

 Superior 
properties



Emerging Engineered Material Systems

Thin-Film Solar Cell 
Polymer 

Nanocomposites

Microstructural 
Morphology

Two Types of Nanostructured 
Materials Design

Metamaterial
Topology

(a)

14.9×14.9μm 
1700×1700 pixels



Autodesk

Sophisticated macro structures enabled by additive manufacturing

Multiscale Structures from Additive Manufacturing

TUHH-iLAS

Lockheed Martin

TUHH-iLAS

Lattice materials by additive manufacturing

Benefits of multiscale 
latticed structures:
 Additional weight reduction
 Increased surface area
 Desired permeability
 Another design dimension

Autodesk

Altair

CAESS

GKN Aerospace 

6

http://insider.altairhyperworks.com/wp-content/uploads/2015/06/arm2.jpg
http://insider.altairhyperworks.com/wp-content/uploads/2015/06/arm2.jpg
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Paradigm Shift: Microstructure-Mediated Design

Advanced 
simulation 

Material 
Informatics

System Design 
Methodologies

Microstructural Materials: 
Spatial arrangement of local microstructure features at various constituent 
length scales highly influence overall properties

Atomic/molecular 
level

Micro level
Damping Thermal 

plasticity

Computational “Microstructure-mediated” design 
(McDowell, D. L., Olson, G., B., 2008)

Processing

Structure

Property
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Application of Dielectric Material
• Wires and cables that carry electrical current
• Insulation in heavy machinery
• Insulation material in capacitors 

Design Criteria
• High dielectric constant, low dielectric loss
• High breakdown strength (complicated physical model)
• High strength endurance

Design of Polymer Nanodielectric Systems   
(NSF/DEMS, Chen-Brinson-Schadler)
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Frequency

ta
nδ L

P

H
Design Objective
Min L (Min wear)
Max P (Max wet traction)
Max H (Min rolling resistance)

Design of  Tire Polymer Nanocomposite (Goodyear)

FEA Model

matrix

filler interphase

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=A7Y874iGXz7p4M&tbnid=oh1_X7FfkE39UM:&ved=0CAUQjRw&url=http://www.subaruoutback.org/forums/90-tire-discussion/46334-goodyear-eagle-gt.html&ei=FOe3UdKsIYTn0QHNuYG4Bg&bvm=bv.47810305,d.dmg&psig=AFQjCNFBSnoPLeyw4GhvVo8Wp2tCM8YkpA&ust=1371093133307466
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=A7Y874iGXz7p4M&tbnid=oh1_X7FfkE39UM:&ved=0CAUQjRw&url=http://www.subaruoutback.org/forums/90-tire-discussion/46334-goodyear-eagle-gt.html&ei=FOe3UdKsIYTn0QHNuYG4Bg&bvm=bv.47810305,d.dmg&psig=AFQjCNFBSnoPLeyw4GhvVo8Wp2tCM8YkpA&ust=1371093133307466
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Design Challenges

• Complexity: multidisciplinary, multiscale materials-
structure system, expensive simulations

• Stochasticity: uncertainties induced by materials 
structural heterogeneity, manufacturing imperfection, 
and lacking of knowledge

• Manufacturability: mapping between processing and 
structure; manufacturability constraints; top-down vs 
bottom-up processes

• Material Informatics: exploration of vast materials 
database & computational models
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Need for Stochastic Characterization and Prediction

Example: microbuckling

Representative Volume Element (RVE)

Statistical Volume Element (SVE)

 Smaller volume element ⟶ larger 
uncertainty in constitutive relations 

 The uncertainty of certain 
behavior (fracture, failure, 
fatigue, etc.) is large.

 Cell averaging is not applicable.

Greene, M.S.  et al. CMAME 2011.

Greene, M. S., Xu, H., Tang, S., Chen, W., Liu, W. K., “A 
generalized uncertainty propagation criterion from benchmark 
studies of microstructured material systems”, Computer 
Methods in Applied Mechanics and Engineering, 254, pp 271-
291, 2012.



1219

Interfacial 
Chemistry

Morphology

Process 
Conditions

 Interphase 
Properties

Interactions

Constituents

Conformation

Processing Structure Property
3D Mosaic Simulation

Tg
Dielectric 
constant

Microstructure 
reconstruction

Processing-Structure-Property Relation Chain
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Design 
Representation

Design 
Evaluation

Design 
Synthesis

Small set of 
controllable 

microstructure 
design variables

Rapid assessment 
of design 

performance

Effective exploration of  high 
dimensional irregular design space

Research Issues in Microstructure Design 

Stochastic 
Characterization 
& Reconstruction 
of Microstructure

Machine 
learning of key 
microstructure 
characteristics

Data driven 
design 

synthesis
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Statistical Characterization and Reconstruction

Original
Reconstructed

r

Pr
ob

ab
ili

ty

Descriptor-Based:
Ch.: Distribution of physical descriptors
Rec.: Matching descriptors’ distribution

Correlation Functions: 
Ch.: Morphology          Probability space
Rec. : Matching via iterative pixel swapping 

Aim to Match

Level-cut

Random Field (RF):
Ch.: Modeling the RF of the morphology
Rec.: Level-cutting the RF

Supervised Learning:
Ch.: Morphology        Conditional probability
Rec.: Sampling from the conditionals

𝑃𝑃 𝑦𝑦 𝑿𝑿 → 𝑃𝑃(𝑦𝑦|𝑵𝑵)

Original Image (X)

Reconstruction

Yu et al., CAD, 2013

Jiang et al, J. Microsco, 2014

Xu, et al., JMD, 2014

Bostanabad, et al, 2015
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Correlation Function-based Characterization
CharacterizationOriginal Image

r
r

r

#A1 #A3

#A5 #A7

0 10 20 30 40 50 60
0

0.1

0.2
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0.4
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0.6
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0.9

1

distance [pixels]

f S(r)

 

 

A1
A3
A5
A7

Binarization

Correlation functions

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=A7Y874iGXz7p4M&tbnid=oh1_X7FfkE39UM:&ved=0CAUQjRw&url=http://www.subaruoutback.org/forums/90-tire-discussion/46334-goodyear-eagle-gt.html&ei=FOe3UdKsIYTn0QHNuYG4Bg&bvm=bv.47810305,d.dmg&psig=AFQjCNFBSnoPLeyw4GhvVo8Wp2tCM8YkpA&ust=1371093133307466
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=A7Y874iGXz7p4M&tbnid=oh1_X7FfkE39UM:&ved=0CAUQjRw&url=http://www.subaruoutback.org/forums/90-tire-discussion/46334-goodyear-eagle-gt.html&ei=FOe3UdKsIYTn0QHNuYG4Bg&bvm=bv.47810305,d.dmg&psig=AFQjCNFBSnoPLeyw4GhvVo8Wp2tCM8YkpA&ust=1371093133307466
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Descriptor-based Reconstruction

Dispersion Geometry Composition

Computational Cost Comparison
Size 

(voxel)
Correlation
Function Descriptor

1003 170 hr < 3 min

3003 Memory 
issue < 2 hr

 Low computational cost

 High accuracy

 Clear physical meaning



179

Statistically Equivalent Microstructures

 Stochastic reconstruction of 2D isotropic structure

 Stochastic reconstruction of 3D isotropic structure



189

Characterization and Reconstruction (C&R)                                          
via Supervised Learning

𝑓𝑓 𝑿𝑿 = 𝑓𝑓 𝑋𝑋11 𝑓𝑓 𝑋𝑋12 𝑋𝑋11 𝑓𝑓 𝑋𝑋13 𝑋𝑋11,𝑋𝑋12 ⋯𝑓𝑓 𝑋𝑋𝑛𝑛1𝑛𝑛2 𝑋𝑋11,𝑋𝑋12, … ,𝑋𝑋𝑛𝑛1 𝑛𝑛2−1

= 𝑓𝑓 𝑋𝑋11|𝑿𝑿 <11 𝑓𝑓 𝑋𝑋12 𝑿𝑿 <12 𝑓𝑓 𝑋𝑋13 𝑿𝑿 <13 ⋯𝑓𝑓 𝑋𝑋𝑛𝑛1𝑛𝑛2 𝑿𝑿
<𝑛𝑛1𝑛𝑛2

Where 𝑿𝑿 <𝑖𝑖𝑖𝑖 is the set of all the pixels in 𝑿𝑿 ordered before 𝑋𝑋𝑖𝑖𝑖𝑖.
𝑴𝑴𝑖𝑖𝑖𝑖: Neighborhood of 𝑋𝑋𝑖𝑖𝑖𝑖

• Locality: 𝑓𝑓 𝑋𝑋𝑖𝑖𝑖𝑖 𝑿𝑿 <𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑋𝑋𝑖𝑖𝑖𝑖|𝑴𝑴𝑖𝑖𝑖𝑖) for a sufficiently large (causal) neighborhood 𝑴𝑴𝑖𝑖𝑖𝑖.

• Stationarity: 𝑓𝑓(𝑋𝑋𝑖𝑖𝑖𝑖|𝑴𝑴𝑖𝑖𝑖𝑖) does not depend on pixel location (𝑖𝑖, 𝑗𝑗).

• Characterize by learning the full 
joint distribution of the constituents

• Reconstruct by sampling from 
the learned distribution

𝑋𝑋𝑖𝑖𝑖𝑖

To make the approximation of 𝑓𝑓(𝑿𝑿) tractable, 𝑿𝑿 is assumed to be a form of 
stationary Markov random field (MRF):

GOAL: Development of a Generic and Model-based C&R Method 
Bostanabad R., et al. Acta Materialia, DOI. 

10.1016/j.actamat.2015.09.044, 2015.

18
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Applications to Various Material Systems

(a) Original image, (b) Reconstructed

2D
3D
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Machine Learning for Identifying Key Descriptors

Microstructure samples

(1) Correlation-based 
feature selection: 

eliminate redundant 
descriptors by 

correlation analysis

Descriptors Correlation functions

Frequency

ta
nδ

Material properties

FEA

(2) Correlation 
function-based 

supervised learning

(3) Property-based 
supervised learning

r

C
or

re
la

tio
n

Image Analysis

or Literature 
Search

Supervised Learning

Image-based Analysis

Xu et al. JMD, 2014
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Structural Equation Model (SEM) for Key Descriptor 
Identification

Feature Selection 
(Choose important 

descriptors by weights)

Exploratory 
Factor Analysis 

(EFA)

Input data: 
Microstructure

Descriptors

SEM Parameter 
Estimation

Grouping 
& reduction
of descriptors

Response data:
Correlation 
functions

/Properties

Data SEM based analysis Output

Feature extraction 
(Create latent factors)

Input:
Descriptor

Responses:
PropertyLatent Features

X1

X4

X2

X3

X5

F1

F2

F3

Y1
F’1

Y2

Y3F’2

Y4

𝐅𝐅′ = 𝛃𝛃𝐅𝐅 + 𝛇𝛇𝐗𝐗 = 𝛌𝛌𝐱𝐱𝐅𝐅 + 𝐞𝐞𝐱𝐱 𝐘𝐘 = 𝛌𝛌𝐲𝐲𝐅𝐅′ + 𝐞𝐞𝐲𝐲

• Reduce dimension by discovering latent microstructure features

Zhang, Y., TMS IMMI, 2015
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 VF

 Nearest boundary distance
 Nearest center distance
 Local VF of Voronoi cells
 Cluster number
 Filler Surface Area
 Matrix Surface Area
 Orientation

 Pore size
 Area
 Equivalent Radius
 Compactness
 Aspect ratio
 Roundness
 Eccentricity
 Rectangularity
 Tortuosity

Composition

Dispersion

Geometry

Initial Statistical Descriptor Set (56)

Key Descriptor set

Reduced Descriptor Set for Tire Material

Microstructure 
Design Variables:
 Cluster number N
 Volume fraction VF
 Elongation ratio el
 Nearest distance rd
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Single Screw Extrusion

Descriptors: Processing energy Eϒ
Interfacial energy WPF/WFF

Microstructure Dispersion

ncd

Physical 
Descriptors

Key descriptors learnt via 
supervised learning 

Descriptor:
Normalized interfacial area Ifiller

Processing-structure Relationship

Matrix-specific Model

Generalized Model

Hassinger I., Li X., et al, J. Mater. Sci, 2016

Design Evaluation: Processing-Structure Mapping
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① Obtain SVE sub-
grids from RVE

⑤ Predict RVE property

④ Create mosaic RVE 
based on SVE clusters

③ Determine stochastic SVE 
properties for each cluster

② Classify SVE sub-
squares into N clusters

…

…

…

…

1.

2.

N.

…

1.

2.

N.

SVE database

SVE property 
simulation

Coarsened RVE (mosaic)

Design Evaluation: Mosaic Approach  for Structure-
Property Evaluations

Xu, et al., JMD 2013.
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Data Driven Design Synthesis

Frequency

ta
nδ

L

P
H

Design Objective
(multi-objective 
optimization):
 Min L (Min wear)
 Max P (Max wet traction)
 Max H (Min rolling 

resistance)

Microstructure 
Design Variables:
 Cluster number N
 Volume fraction VF
 Elongation ratio el
 Nearest distance rd

Xu, et al., JMD 2014.
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NanoMine
Data Resource

Curation

Exploration

Visualization

Verification and 
Uncertainty

Dissemination

Microstructure
Characterization &

Reconstruction
Materials Concept 

Selection
Data Analytics &

Optimization

First Principles & 
Heuristic Models

Continuum Models

Interphase Models

Integrated Web Interface & Data Exchange 
Database Analytics/Design 

Tools Computation

Processing Structure Properties

Database
• Curate and explore nanocomposite 

database with experimental and 
computation data

• Material Data Curator (NIST) with data 
template tailored for nanocomposites

Analysis/Design Tools
• MCR toolkit to calculate physical 

descriptors and reconstruct 2D/3D 
microstructure

• Data mining tools for processing, 
structure and property correlation and 
material design

Computation
• Heuristic and DFT models for polymer 

and surface chemistry
• Finite element modeling on 

thermomechanical and dielectric 
properties

Using NIST Material Data Curator

Nanomine.northwestern.edu

NanoMine: Polymer Nanocomposite Data Resource

Zhao, et al., APL Materials, 2016.
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Vehicle 
System

Sub-System

Component

Laminate

Microstructure: 
fiber & matrix

Multiscale Design of Lightweight Carbon 
Fiber Composites (DOE/Ford)

r
r

Microstructure Modeling:
Characterization & 

Reconstruction

Uncertainty 
Propagation 
across Scales

Inputs

Outputs

Constituents Process and 
Property 
Modeling

Knowledge Discovery: Data 
Mining & Machine Learning

Pareto frontier
Property I

P
ro

pe
rty

 II
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Stochastic Multiscale Analysis and Design

Vehicle 
Subsystem

Continuum 
(Part)

Macroscale
(Laminates)

Mesoscale
(One Layer)

Microscale 
(UD)

Nanoscale
(Constituents)

Goal-means / Top-down / Microstructure-mediated Design

Bottom-up Modeling and Experimental Validation

GOAL: Multiscale Design of Material Systems with Targeted Properties

• The bottom-up approach is not tailored for material design and requires much
time and effort.

Challenges:

• Coupling the computational models in the top-down approach is not trivial -
what information needs to be passed up from fine to coarse scales?
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Accounting Local Microstructural Variations and Defects

Spatial Microstructural Correlation

𝑺𝑺 = 𝑓𝑓1(𝜺𝜺,𝒎𝒎𝟏𝟏,𝑷𝑷𝟏𝟏) 𝑺𝑺 = 𝑓𝑓2(𝜺𝜺,𝒎𝒎𝟐𝟐,𝑷𝑷𝟐𝟐) 𝑺𝑺 = 𝑓𝑓3(𝜺𝜺,𝒎𝒎𝟑𝟑,𝑷𝑷𝟑𝟑)

Realizations

Underlying Random Field for 
the General Constitutive Law 𝑺𝑺 = ℱ(𝜺𝜺,𝒎𝒎,𝑷𝑷):

𝜺𝜺: Boundary Condition
𝒎𝒎: Microstructural Descriptors

𝑷𝑷: Constituents Properties

Defects and Anomalies

• Local morphological changes (such as
volume fraction) can drastically affect
the material performance.

• Monitoring local and global changes
are essential to quality control.
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Response Surface of Constitutive Relations for Hyperelasticity

GOAL: Learn the macroscopic constitutive law of a class of 
microstructures, i.e., find 𝑓𝑓 in 𝑊𝑊 = 𝑓𝑓(�𝑬𝑬,𝒎𝒎). 

Descriptors
𝑉𝑉𝑉𝑉 2, 45 %
𝜇𝜇𝑛𝑛𝑛𝑛 0.3, 0.5 𝑚𝑚𝑚𝑚
𝑒𝑒 [1, 5]
𝑁𝑁 [40, 100]
�𝐸𝐸11 −10, 150 %
�𝐸𝐸22 −10, 150 %
�𝐸𝐸12 −40, 40 %

RVE 1 RVE 2 RVE 3 RVE 4



Metamaterial Design: Light-trapping for thin-
film solar cell

Conventional bulk solar cell

C. Adrian et. al, 
Nature Materials, 2011

Flexible Transparent

C.C. Chen et. al.,
ACS Nano, 2012Wikipedia

Thin-film solar cell

Bulk Cell

Active Material

Low-Cost
High-efficiency cellThin-film cell

Reduce
thickness

Increase 
Absorption



Topology optimization for highly-efficient nanophotonic light-
trapping structure for thin-film solar cells

Optimizing the material distribution in elementised
design space with periodicity constraint

C. Wang, S. Yu, W. Chen, C. Sun, Scientific Report, 2013
S. Yu, C. Wang, C. Sun, W. Chen, Struct. Multidisc. Optim., 2014

32



GA and SIMP based Topology Optimization of the 
Periodic Light-Trapping Structures

λ
= 

40
0 

nm
λ

= 
50

0 
nm

λ
= 

60
0 

nm

GA SIMP Fourier

C
. W

an
g,

 S
. Y

u,
 W

. C
he

n,
 C

. S
un

, S
ci

. R
ep

., 
20

13
S

. Y
u,

 C
. W

an
g,

 C
. S

un
, W

. C
he

n,
 S

tru
ct

. M
ul

tid
is

c.
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., 
20

14

Topology optimization of the light-trapping structure 
at single incident wavelength using GA and SIMP

33



Validation of cost-effective, high-performance nanophotonic 
structures for efficient light control

Significant enhancement in light absorption efficiency has been 
achieved in the optimized nanophotonic light-trapping structure

More than a week to pattern the optimal design on a
4 inch wafer using the state-of-the-art e-beam lithography (EBL),
costs thousands of dollar by accounting for the total cost of ownership (TCO)

C. Wang, S. Yu, W. Chen, C. Sun, Sci. Rep., 2013
S. Yu, C. Wang, C. Sun, W. Chen, Struct. Multidisc. Optim., 2014

34



Quasi-random Structures in Nature

Moth-eye Blue-bird feather barbs Ultra-white beetle scale

Periodic RandomQuasi-random

Nanophotonic structures in nature



S. Yu, C. Wang, B. Dong, Z. Jiang, J. Zi, 
W. Chen, C. Sun, Submitted, 2015

Biological quasi-random 
nanostructures from self-

assembly of biological medium

Functional quasi-random nanostructures 
from bottom-up processes:

S
. W
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im
, e

t a
l, 

S
ci

en
ce

, 1
99

9 

Polymer phase-separated anti-reflection coating

Nano-wrinkled
LED

W
. H

. K
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, e
t. 

al
., 

N
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ho

., 
20

11

Particle assembling 
structural color

J.
 D

. F
or

st
er

, e
t a

l, 
A

dv
. M

at
., 

20
10

Cost-Effective Bottom-up Fabrications

36



Spectral density function (SDF)

𝐹𝐹 )𝑍𝑍(𝐫𝐫 = 𝐴𝐴𝐤𝐤 ⋅ 𝑒𝑒𝑖𝑖𝜙𝜙𝐤𝐤 ,
Fourier transformation of structure Z(r) Spectral density function SDF calculation

𝑓𝑓 𝑘𝑘 = ⁄𝐴𝐴𝑘𝑘 ⋅ 𝑒𝑒𝑖𝑖𝜙𝜙𝑘𝑘 ⋅ 𝐴𝐴𝑘𝑘 ⋅ 𝑒𝑒−𝑖𝑖𝜙𝜙𝑘𝑘 𝐶𝐶

SDF describe the structure spatial correlation in frequency domain

Structure 
𝑍𝑍(𝐫𝐫)

Fourier spectrum |𝐹𝐹 )𝑍𝑍(𝐫𝐫 | SDF 𝑓𝑓 𝑘𝑘

Best Paper Award, 42th ASME Design Automation Conference, for paper Yu et 
al.  “Characterization and Design of Functional Quasi-Random Nanostructured 
Materials using Spectral Density Function”

37



Spectral Density Function for Non-deterministic Quasi-
Random Structure Representation

Spectral density function (SDF): 
1D function of Fourier components distribution over spatial frequency

5: Dufresne E. R. et al, Soft Matter, 2009 6: Vukusic P. et al, 
Science, 2007

SDF

Quasi-random structure

Statistical reconstruction:
Random sphere packing (b)
Gaussian random field (c, e)

7:
Te

ub
ne

r, 
M

., 
E

ur
op

hy
s

Le
tt,

 1
99

1

Yu, et al. IDETC, 2016
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Spectral Density Function vs Correlation Function

Q
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• SDF captures the differences between structures more clearly than 
the conventional 2-point correlation function.

• Smaller number of parameters and fast reconstruction enable rapid 
explorations of optimal fabricable nanostructures



SDF based computational design methodology of quasi-
random nanostructure materials

40



𝑡𝑡 = 600 nm, λ = 700 nm 

𝑓𝑓 𝑘𝑘 :

max
𝑍𝑍 𝑓𝑓 𝑘𝑘 ,𝜌𝜌,𝑡𝑡1

:𝐴𝐴 𝑍𝑍 𝑓𝑓 𝑘𝑘 ,𝜌𝜌, 𝑡𝑡1 , 𝑡𝑡, λ

Designing quasi-random light-trapping nanostructure 
assuming a step SDF (single-wavelength) 

𝑓𝑓 𝑘𝑘 ,𝜌𝜌

ka
* = 0.0029nm-1, kb

* = 0.0030nm-1, ρ* = 62%, t1* = 75nm

41



Prof. Teri W. Odom Group

Scalable fabrication of quasi-random nanostructure 
using wrinkle lithography and the corresponding SDF

Control wrinkle wavelength λw

Control filling ratio ρ and depth t1

Thin-film wrinkling

Wrinkle       patterning

42



μ = km = 1/λw, σ = 0.958/λ + 0.00017
SDF~N(μ,σ);

SDF derivation for wrinkle pattern
5nm/second

1.25%/second

4nm/second

Processing-structure mapping and SDF derivation for 
wrinkle pattern
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Concurrent design of quasi-random light-trapping 
nanostructure fabricated by wrinkle lithography

max
𝑍𝑍

:𝐴𝐴 𝑍𝑍 𝑘𝑘𝑚𝑚,𝜌𝜌, 𝑡𝑡1 , 𝑡𝑡, λ ; km
* = 0.0018nm-1, ρ* = 52%, and t1* = 210nm
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Closure

• Materials system is a complex engineered system that 
can benefit from state-of-the-art computational design 
methods.

• Stochasticity plays a critical role in material behavior 
prediction. 

• Design and manufacturability are highly coupled in 
materials design.

• Big data and lack of data co-exist in materials 
informatics.
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