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Internet of Things (IoT)

• A network of physical objects
- Devices
- Vehicles
- Buildings

• Allows objects to be 
- Sensed and controlled
- Remotely across the network

• Growing rapidly, by 2020:
- 50 billion devices
- 6.58 devices per person 
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What IoT Brings: More Sensing (and More Data)

• Total size of dataset: 267 GB 

• 1.1 billion taxi and Uber trips (2009 - 2015)

• Pick-up and drop-off dates/times, locations, distances...
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[Source: nyc.gov]

TLC: Taxi and Limousine Commission 
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What IoT Brings: More Control
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Connected and Autonomous VehiclesSmart Home Appliances

Wireless Traffic Light Control Smart Buildings
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Smart Cities: IoT + Decision Support
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City Infrastructure

Control & Optimization 
Algorithm

Sensor Data

Actions
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Investment in Smart Cities
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“... an infrastructure to continuously improve the collection, aggregation, and use 
of data to improve the life of their residents – by harnessing the growing data 
revolution, low-cost sensors, and research collaborations, and doing so securely 
to protect safety and privacy.” 

The Smart Cities Initiative from the White House (Sep 2015)

TerraSwarm
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TerraSwarm: Swarm at The Edge of The Cloud
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“How should we make use of data?”

“How should we send data?”

“How should we collect data?”

TerraSwarm
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Research Interests
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Convex Optimization 
Control Theory 
Statistics

Theory Applications

Energy

Transportation

Research Topics

Multi-Agent 
Systems

Stochastic 
Systems

Network 
Dynamics
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Research Overview
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Data-Driven Optimization 
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[ACC13], [SIOPT15] [CDC15], [TASE16], [ICCPS17]

Pricing for Ridesharing

[Allerton14], [TAC16] [ACC17]

Privacy Solutions for Cyber-Physical 
Systems
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Research Overview
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Data-Driven Optimization 
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Privacy Solutions for Cyber-Physical 
Systems

[Allerton14], [TAC16] [ACC17]

Pricing for Ridesharing
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[Source]: AESO
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Motivation: Wind Energy Integration
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conventional 
power plant

wind power storage devices

+

Control Action: Allocation of energy 
storage

How can we make use of the wind 
power generation data to maximally 
utilize wind power?

Wind Energy Data
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Motivation: On-Demand Ridesharing in Cities 
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How can we make use of the trip 
data to reduce the average wait 
time for passengers?

- Pick-up and drop-off times
- Pick-up/drop-off locations
- Travel distances

Cause: Mismatch between 
supply and demand

Control Action: Redistribution of 
empty vehicles
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Probability distribution that models 
the stochastic phenomenon

Background: Stochastic Programming

•    : Objective function

•    : Decision variable
- Ridesharing: Redirection of empty vehicles
- Wind power integration: Allocation of storage

•   : Stochastic phenomenon
- Ridesharing: Future passenger demand
- Wind power integration: Wind power generation 

•   : Probability distribution of 
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Distribution is Not Always Available
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We often do not have: Instead, we have:

Question: How should these samples be used in a computationally 
tractable way with performance guarantees?
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Using Sampled Data: Previous Methods
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Sample average approximation

minimize
x

1

n

nX

i=1

f(x, ✓
i

)

• Weak guarantee on performance

Robust optimization

minimize

x

max

✓2⇥
f(x, ✓)

✓i

⇥

• Can be extremely conservative

Distributional Information  +   Uncertainty ?
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Using Sampled Data: Distributional Uncertainty

• Distributional uncertainty
- An ambiguity set in the space of probability distributions
- No assumption on the type (continuous vs discrete, 

Gaussian, uniform, ...) of distributions
- Contains the true distribution with high probability
- Informally: “Uncertainty of uncertainty”
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D

d
(true distribution)

minimize
x

E
✓⇠d

[f(x, ✓)](vs.                                            )minimize

x

max

d2D
E
✓⇠d

[f(x, ✓)]

• Decision making problem: Distributionally robust optimization

- Strong worst-case guarantees
- Subsumes conventional robust optimization
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Distributional Uncertainty

• Method 1: Based on certain (pseudo)metric 
- KL divergence
- Wasserstein metric (earth mover’s distance)

• Metric ball centered at the empirical distribution

• The ball contains     with high probability

• Advantage: “Nonparametric” characterization 

• Disadvantage: Complexity of decision making 
against      grows quickly with the number of 
samples
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Distributional Uncertainty (cont’d)

• Method 2: Based on generalized moments (this talk)

•  Assume:     is easily bounded

• Examples
- Moments:               ,                     
- Tail probability: 

• Classical concentration inequalities can be used to 
compute the probability that      contains 
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E[✓] = ✓̂ cov[✓] = b
⌃

P(✓ � ✓̄)  ✏

g
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!
 exp(�2nt2)Example (Hoeffding’s inequality):
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Challenges and My Contribution

• Challenge: Finding the worst-case distribution
- Infinite-dimensional optimization problem
- Not numerically tractable
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minimize

x

max

d2D
E
✓⇠d

[f(x, ✓)]

• My contribution
- Formulate equivalent convex optimization problem (under certain conditions)
- Tractable numerical solutions
- Conditions apply to many resource allocation and scheduling problems

• Previous work on special instances
- [Scarf, 1958]: Analytical solution for a special case
- [Bertsimas, Popescu, 2005]: Optimal probability inequalities
- [Vandenberghe, Boyd, Comanor, 2007]: Optimal Chebyshev bounds
- [Delage, Ye, 2010]: Piecewise affine functions
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g(✓)

f(✓)

 

Main Result: Equivalent Convex Optimization Problem

20

Theorem: There exists an equivalent convex 
optimization problem for computing the 
worst-case distribution if

f

concave

• The objective     is piecewise concave

f(✓) = max

k
f (k)

(✓) f (k)

g

convex

• The constraint     is piecewise convex      

g(✓) = min
l

g(l)(✓) g(l)

Shuo Han, Molei Tao, Ufuk Topcu, Houman Owhadi, Richard M. Murray, “Convex optimal uncertainty 
quantification,” SIAM Journal on Optimization, 25(3), 1368–1387, 2015.
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concave piecewise affine 0-1 indicator

resource allocation/schedulingresource allocation/scheduling failure rate

Piecewise Concave Functions
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0

1I(✓ � a)max

k2K
{aT

k ✓ + bk}
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Piecewise Convex Functions

22

linear convex 0-1 indicator

mean covariance & higher moments tail probability

0

1I(✓ � a)
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The Convex Optimization Problem
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maximize

{pkl,�kl}k,l

X

k,l

pklf
(k)

(�kl/pkl)

subject to

X

k,l

pkl = 1

pkl � 0, 8k, l
X

k,l

pklg
(l)

(�kl/pkl)  0

K · L

f(✓) = max

k2{1,2,··· ,K}
f (k)

(✓)

g(✓) = min
l2{1,2,··· ,L}

g(l)(✓)

For: 

• The worst case is always attained by a discrete distribution

• Total number of Dirac masses in the distribution: 
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Storage Allocation for Power Grid
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power flow
fij

storage

✓iwind power
(stochastic)
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�
Storage Allocation Problem

optimal power flow

✓piecewise concave in  
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Numerical Example: IEEE 14-Bus Test Case

• Network with 5 generators

• Time: one day, 3-hour interval

• Mean and covariance obtained from 
real wind generation data
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[Source]: AESO
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The Influence of Information Constraints
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Exact distribution

Support Information Only

Support + Mean 
+ Covariance

Shuo Han, Ufuk Topcu, Molei Tao, Houman Owhadi, Richard M. Murray, “Convex optimal uncertainty 
quantification: Algorithms and a case study in energy storage placement for power grids study,” 
American Control Conference, 2013. 
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On-Demand Ridesharing
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Dispatch Center

Vehicle

Customer

Predicted 
Demand

Dispatch 
Command

min.
X1:T

TX

t=1

[JD(Xt) + JE(Xt, rt)]

Distribution of Customer Demand

Vehicle Flows Wait TimeCost of Rebalancing

Demand
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Robust vs. Non-Robust

• Robust optimization against demand uncertainty 
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Fei Miao, Shuo Han, Shan Lin, George J. Pappas, “Taxi dispatch under model uncertainties,” IEEE 
Conference on Decision and Control, 2015.
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non−robust solutions
robust solutions

Robust solution: 35.5% reduction
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NYC Dataset: 4 years, 100 GB
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Conventional vs. Distributionally Robust

• Distributionally robust formulation
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)

Fei Miao, Shuo Han, Abdeltawab Hendawi, et al., “Data-driven distributionally robust vehicle 
balancing with dynamic region partition,” ACM/IEEE Intl. Conf. on Cyber-Physical Systems, 2017.

(non-robust)
(distr. robust)

(robust #1)
(robust #2)

confidence level
Note: Confidence level not 
optimized for distr. robust opt.

Confidence level: Probability the true parameter/distribution lies outside ambiguity set



Shuo HanUTC-IASE, Apr 2017

Future Directions
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• Distributed computation
• Approximate algorithms

• Markov properties
• Prior knowledge

• When to discard old data
• When to re-learn

Large Datasets Structured Models Online Optimization
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Summary

• Distributional uncertainty: A new approach to data-driven optimization 

• A rigorous way to make use of sampled data
- Probabilistic guarantees
- Worst-case analysis/design: Often required for engineering applications

• Computationally efficient
- Convex formulation available for a large class of problems 
- Examples: Resource allocation and scheduling
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