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Networks are important!

“Ford went to Capitol Hill in late 2008 pushing for the rescue of its rivals,
GM and Chrysler ... GM received $49.5 billion,... Chrysler Group received
$10.5 billion in bailout funds”

“Without financing during bankruptcy, GM and Chrysler would have had
to go out of business, taking down many suppliers. That would have likely
caused bankruptcies at the healthier automakers such Ford Motor, who
would not have been able to get the parts they needed to build cars.”

– CNN
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Systemic Risk

‘system’ ≡ collection of ‘entities’.

Examples:
firms in an economy
business units in a company
suppliers, sub-contractors, etc. in a supply chain network
generating stations, transmission facilities, etc. in a power network

Systemic risk refers to the risk of the entire system. Involves:
the simultaneous analysis of outcomes across all entities in a system
the possibility of complex interactions across the network
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Bank Lending vs Asset-Firm Holding

Cross-firm Lending Asset-firm Holding

WSJ OpEd, Peter Wallison, 10 February, 2012
“None of these firms was weakened by its exposure to Lehman or anyone
else. They were weakened by the fact that virtually all of them held – or
were suspected of holding – large amounts of what the media came to call
toxic assets.”
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Three different approaches

Risk management
Portfolios known: distributions known but realizations unknown
Goal: Apportion total risk to various entities

Stylized dynamic models
Portfolio update rules known
Goal: Understand the characteristics of resilient networks

Feedback analysis
Signed directed graphs (SDG) to model feedback
Goal: Analysis of particular networks
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Risk management
F ≡ set of nodes in the network (firms, suppliers, edges in a graph)

X̃i = random loss of node i X̃F = random loss of the network

Goal: Measure for the “acceptability” of X̃F
risk measure ρ(·): ρ(X̃F ) is the “risk” of X̃F
Allocate ρ(X̃F ) to individual entities i
Incentive compatibility
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Examples of Financial Systemic Risk Measures

F = firms in the economy
Xi,ω = loss of a firm i in scenario ω

Example. (Systemic Expected Shortfall)

CVaRα
({∑

i∈F
Xi,ω

})
[Acharya et al., 2010; Brownlees, Engle 2010]

Example. (Deposit Insurance)

E∗
[∑
i∈F

X+
i,ω

]
[e.g., Lehar, 2005; Huang et al., 2009]
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Systemic Risk Measures

Scenario

ω1

ω2

...

ω|Ω|

0 T

Firm 1

X1,ω1

X1,ω2

...

X1,ω|Ω|

Firm 2

X2,ω1

X2,ω2

...

X2,ω|Ω|

· · ·

· · ·

. . .

· · ·

Firm |F|

X|F|,ω1

X|F|,ω2,

...

X|F|,ω|Ω|

Ω = set of scenarios F = set of firms (entities in the system)

X ∈ RΩ×F Xi,ω = loss for firm i in scenario ω
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Example

3 firms in 3 future scenarios (equally likely)
Loss matrix (+ Loss; - Profit)

Scenario

ω1

ω2

ω3

Firm 1

+50

-40

+20

Firm 2

-40

+50

+20

Firm 3

+20

-40

+50

Questions:

What is the total “risk” of the economy?

How does one “allocate” this risk to each of the three firms?
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Systemic Risk Measures: Definition

Ω = set of scenarios F = set of firms (entities in the system)
Xi,ω = loss for firm i in scenario ω X ∈ RΩ×F

Xω = loss vector in scenario ω

Definition. A systemic risk measure ρ : RΩ×F → R satisfies:
(i) Monotonicity: if X ≥ Y , then

ρ(X) ≥ ρ(Y )

(ii) Positive homogeneity: for all α ≥ 0,

ρ(αX) = αρ(X)

(iii) Normalization: ρ
(
1E) = |F|

10



Systemic Risk Measures: Definition

Ω = set of scenarios F = set of firms (entities in the system)
Xi,ω = loss for firm i in scenario ω X ∈ RΩ×F

Xω = loss vector in scenario ω

Definition. A systemic risk measure ρ : RΩ×F → R satisfies:
(i) Monotonicity: if X ≥ Y , then

ρ(X) ≥ ρ(Y )

(ii) Positive homogeneity: for all α ≥ 0,

ρ(αX) = αρ(X)

(iii) Normalization: ρ
(
1E) = |F|

10



Systemic Risk Measures: Definition
Given x, y ∈ RF , define the ordering x �ρ y

x �ρ y ⇐⇒ ρ



x>

x>

...
x>


 ≥ ρ



y>

y>

...
y>




i.e. an economy with outcome x (resp. y) in all states Ω

Definition. (con’t.)
(iv) Preference consistency: if Xω �ρ Yω for all scenarios ω, then

ρ
(
X
)
≥ ρ

(
Y
)
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Systemic Risk Measures: Definition
Definition. (con’t.)
(v) Convexity: for all 0 ≤ α ≤ 1, ᾱ = 1− α

(a) Outcome convexity: if
Z = αX + ᾱY (1)

then, ρ
(
Z
)
≤ αρ(X) + ᾱρ(Y )

(b) Risk convexity: if for all scenarios ω ∈ Ω,

ρ(Zω, . . . , Zω) = αρ(Xω, . . . , Xω) + ᾱρ(Yω, . . . , Yω), (2)

then, ρ
(
Z
)
≤ αρ(X) + ᾱρ(Y )

Two different notions of diversity
One allows cross-subsidization
Other removes randomness
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Systemic Risk Measures: Definition

Definition. (con’t.)
1. Outcome convexity: Increasing diversity reduces risk

Xω

Yω

⊕ Zω ⇒ ρ
(
Z
)
≤ αρ(X) + ᾱρ(Y )

α

ᾱ

2. Risk convexity: Removing randomness reduces risk

◦ ρ
(
Xω1>Ω

)

◦ ρ
(
Yω1>Ω

)ρ
(
Zω1>Ω

)
◦ ⇒ ρ

(
Z
)
≤ αρ(X) + ᾱρ(Y )

α

ᾱ
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Structural Decomposition

Definition. An aggregation function is a function Λ: RF → R that is
monotonic, positively homogeneous, convex, and normalized so that
Λ(1F ) = |F|.

Aggregation function: aggregates risk across firms in a given scenario

Theorem. A function ρ : RΩ×F → R is a systemic risk measure with
ρ(R|Ω|×|F|) = R if, and only if, there exists

an aggregation function Λ
coherent single-firm base risk measure ρ0 such that

ρ(X) = (ρ0 ◦ Λ)(X) , ρ0
(
Λ(X1),Λ(X2), . . . ,Λ(X|Ω|)

)
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Example: Economic Systemic Risk Measures

F = firms in the economy
Xi,ω = loss of a firm i in scenario ω

Example. (Systemic Expected Shortfall)

Λtotal(x) ,
∑
i∈F

xi, ρSES(X) , (CVaRα ◦ Λtotal)(X)

[Acharya et al., 2010; Brownlees, Engle 2010]

Example. (Deposit Insurance)

Λloss(x) ,
∑
i∈F

x+
i , ρDI(X) , E∗ [Λloss(Xω)] = E∗

[∑
i∈F

X+
i,ω

]
[e.g., Lehar, 2005; Huang et al., 2009]
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Example: Resource Allocation
A = a set of activities
F = a set of capacitated resources
Xi,ω = shortage of resource i in scenario ω

Aggregation function:

ΛRA(x) , min
u

∑
a∈A

caua

subject to
∑
a∈A

biaua ≥ xi, ∀ i ∈ F

u ∈ RA

where
ua = reduction in level of activity a (decision variable)
ca = per-unit cost of reductions in activity a
bia = per-unit consumption of resource i by activity a
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Example: Eisenberg-Noe Contagion Model

F = firms, who have assets and obligations to each other
Πij = fraction of the debt of firm i owed to firm j

x = losses on the asset portfolio of firms

Aggregation Function: γ > 1

ΛCM(x) , min
y∈RF

+ , b∈R
F
+

∑
i∈F

yi + γ
∑
i∈F

bi

subject to bi + yi ≥ xi +
∑
j∈F

Πjiyj , ∀ i ∈ F .

where loss xi in firm i is covered by
reducing payments by yi
borrowing bi from the regulator
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Risk attribution
Dual representation for risk ρ(X):

ρ(X) = maximize
π̄,Ξ

∑
i∈F

∑
ω∈Ω

Ξi,ωXi,ω

subject to (1, π̄) ∈ A∗
(π̄ω,Ξω) ∈ B∗, ∀ ω ∈ Ω
π̄ ∈ RΩ, Ξ ∈ RF×Ω

Risk attributed of firm i: y∗i =
∑
ω∈Ω Ξ∗i,ωXi,ω

Theorem. (No Undercut) Given α ∈ RF+, define
r(α) , ρ

(
α1x1; . . . ;α|F|x|F|

)
Then,

α>y∗ ≤ r(α)

Generalization of attribution scheme of Aumann & Shapley (1974),
Denault (2001), Buch & Dorfleitner (2008).
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Example: Risk Attribution

3 firms in 3 future scenarios (equally likely)
ρSES(X) , (CVaR1/3 ◦ Λtotal)(X) = CVaR1/3 (x1 + x2 + x3) = 30

Scenario

ω1

ω2

ω3

Risk Attribution

Firm 1

+50

-40

+20

20/3

Firm 2

-40

+50

+20

20/3

Firm 3

+20

-40

+50

50/3
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Structural decomposition extends broadly

Homogeneous Systemic Risk Measures:
monotone, +vely homogeneous, preference consistent, not convex
structural decomposition exists
Homogeneous single-firm base risk measure
Homogeneous aggregation function

Convex Systemic Risk Measures:
monotone, convex, preference consistent, not +vely homogeneous
structural decomposition exists
convex single-firm base risk measure
convex aggregation function

Key idea: Preference consistency allows for the structural decomposition
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Further extensions

General probability spaces: Kromer, Overbeck and Zilch. Systemic risk
measures on general probability spaces. 2014.

Coherent systemic risk measures
Convex systemic risk measures
Monotone positively homogeneous systemic risk measures

More general risk measures: Biagini, Fouque, Frittelli Meyer-Brandis. A
unified approach to systemic risk measures via acceptance sets. 2015.

ρ(X) = inf{π(Y ) : Λ(X − Y ) ∈ A}, Y = capital injection

Set-valued measures of systemic risk Feinstein, Rudloff, Weber.
Measures of Systemic Risk. 2015.

ρ(X) = {Y : Λ(X + Y ) ∈ AY } ⊆ R|F|
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Asset-firm networks
XF random losses of F nodes in Ω scenarios

XF is completely exogenous
The nodes do not take any actions

The network consists of just the firms. Only captures cross-firm lending
defaults, hair-cut, funding liquidity

Firms also interact via commonly held assets
MBS, fire sales, volatility, risk-aversion
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Model: Assets, firms and portfolio rules
A = set of assets. F = set of firms.

Portfolio rules for firms: Π ∈ R|A|×|F|

Πi,h = fraction of wealth of firm h invested in asset i

Portfolio rules Π(q, x) rules depend on ...
prices q
exogenous (risk) factors x
could also depend on wealth w (in the paper!)

Example: CRRA utility with risk aversion βh, log-normal payoffs
log(ph) ∼ N(µh,Σh).

Πh(q, µh,Σh, rf ) = 1
βh

Σ−1
h

(
µh − log(q)− rf1 + 1

2 diag{Σh}
)
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Prices are endogenous!

Market clearing implies

q = D−1Π(q, x)w = D−1Π(q, x)(θ0(x) + ΘT q)

Implicit function theorem

∂q
∂x = D−1

[
I −ΠΘ̄T −HD−1

]−1 [
∂Π
∂xw + Π∂θ0

∂x

]
Network Effect Direct Effect

∆q = D−1
[
I −ΠΘ̄T −HD−1

]−1 [
∂Π
∂xw + Π∂θ0

∂x

]
∆x

Direct Effect, propagated via Network Effect, forms price change.
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Network Effect

∂q

∂x
= D−1

[
I −ΠΘ̄T −HD−1

]−1
[
∂Π
∂x

w + Π∂θ
0

∂x

]
Two components

ΠΘ̄T ∈ R|A|×|A|: holding-induced cross-asset interaction

(ΠΘ̄T )ij =
|F|∑
h=1

ΠihΘ̄jh.

H ∈ R|A|×|A|: wealth-weighted cross-asset portfolio sensitivity

Hij =
|F|∑
h=1

∂Πih

∂qj
wh.

Portfolio tracking: Π = constant ... H ≡ 0.
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Network Effect
[
I −ΠΘ̄>

]−1
= I + ΠΘ̄> +

(
ΠΘ̄>

)2
+
(
ΠΘ̄>

)3
+ . . . .

Direct Effect = I · [DE]
Primary Network Effect = ΠΘ̄> · [DE]

Secondary Network Effect =
(
ΠΘ̄>

)2
· [DE]

(ΠΘ̄>)tij = t-th order impact from asset j to i over paths of length 2t.

...

...
...

...
Assets

j

i

k Firmsg

h

Θ̄jg

Πih

ΠihΘ̄kh ·ΠkgΘ̄jg

26



Network Design
Decompose Π into leverage b ∈ R|F| and holding network X ∈ R|A|×|F|

bh = leverage for firm h

Xih = fraction of investment into asset i
Πih = bhXih

...

...
...

...
Dq

j

i

k diag(b)wg

h

Xjg

Xih

holding X

Feasible economies: (D, q, w, b) such that 1>ADq = w>b
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Network Design

Set of feasible holding networks
X =

{
X : Dq = X diag(b)w,1>AX = 1>F , X ≥ 0

}
Suppose Θ is in equilibrium. Then

ΠΘ̄> = Y (X) , X diag(b) diag(w) diag(b)X>[D diag(q)]−1.

The Maximal Network Amplifier

MNA , ρ([NE(X)]) = ρ([I − Y (X)]−1)

where ρ(·) is the spectral radius of a matrix.

Network design problem: min
X∈X

MNA(X)
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Low and High Leverage Regimes

Define: λmax , min
X∈X

λmax(Y (X)) λmin , max
X∈X

λmin(Y (X))

Low leverage economy , λmax < 1 High leverage economy , λmin > 1

Theorem: For any economy

λmin ≤ λmax

Low leverage and high leverage economies are disjoint.
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Desirable network: Low Leverage Economy
Theorem: For a low-leverage economy:

min
X∈X

MNA(X) ≤ 1
1− λmax

Bound achieved by the mutual-fund network

X∗ ,
1

1>ADq
(Dq)1>F

In a mutual fund network

All firms invest in the same portfolio
The risks of the firms are completely pooled
Risk management achieved by diversification
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Desirable network: High Leverage Economy
Theorem For a high-leverage economy

min
X∈X

MNA(X) ≤ 1
λmin − 1

Bound asymptotically achieved by an isolated network

X∗ =


1 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0
0 . . . 0 0 . . . 0 . . . . . . . . .
0 . . . 0 0 . . . 0 1 . . . 1



Firms invest in only one asset
The firms are clustered into groups that do not interact
Risk management achieved by diversity
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Systemic risk management ≡ managing feedback
Systemic risk is a consequence of positive feedback loops

Networks or directed graphs do not enough information to identify them

Propose signed digraphs (SGD) as the next level of detail
Used in the process engineering literature
Extends the analysis from arcs to loops – non-local interactions
Systematic analysis of the hazards and instabilities
Compromise between full control theoretic analysis and graphs

Financial entity ≡ processing plant that transforms inputs to outputs
Graphs are good for flows, e.g. internet, power grid, etc.
Signed digraphs are good for flow transformations
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SDG example: Continuous stirred reactor

Inputs: Concentration cAi of A and temperature Ti
Output: Exothermal Reaction A→ B

Control: Temperature set point Tsp

33



SDG example: Continuous stirred reactor

Solid arc: positive gradient, e.g. ∂cA
∂cAi

> 0.

Negative arc: negative gradient, e.g. ∂cA
∂r < 0.

Loops
cA → r → cA: negative feedback
T → r → T : positive feedback
T → ε→ Fc → T : negative feedback
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Simplified bank-dealer network
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SDG for bank-dealer
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SDG for bank-dealer: fire sales
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SDG for bank-dealer: fire sales

Positive feedback loop
PBDM → CPB → VPB → LHF → QHF → PBDM
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SDG for bank-dealer: funding runs
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SDG for bank-dealer: funding runs

Positive feedback loop
PBDM → CMM → FMM → VFD → λSPTD → εTD → PBDM
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Summary
An axiomatic framework for systemic risk

Subsumes many recently proposed risk measures
Structural decomposition of systemic risk
Methodology extends to a much broader class of risk functions

Structural model for asset-firm contagion
Endogenous asset prices
Direct Effect, propagated via Network Effect, forms price change
low-leverage economies favor mutual fund holding networks
high-leverage economies favor isolated holding networks

Signed di-graph (SGD) to identify positive feedback loops
Fast depth first algorithms for discovering loops
Identifies fire sales and funding runs
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