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Introduction
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Introduction

Experimental design is important when resources are limited.
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Introduction

We first consider a linear regression model:

Y = Xθ + ε

The simple least square estimation: θ̂ = (XTX )−1XTY
Cov(θ̂) = Σ = (XTX )−1

We want (XTX )−1 to be as “small” as possible.
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Introduction

Some alphabetic optimalities:

A–optimality: minimize the trace of the covariance matrix tr(Σ)

C–optimality: minimize the variance of a predefined linear com-
bination of parameters (βTΣ−1β)−1

D–optimality: minimize the determinant of the covariance ma-
trix |Σ|
E–optimality: minimize the maximum eigenvalue of the covari-
ance matrix max(σii )

Entropy based expected information gain in a Bayesian setting.
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Computational Challenges in OED for nonlinear
systems

The sampler
The optimizer
The forward problem solver
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Major Notations

p(·): probability density function
θ: unknown parameter vector
θ0: the d dimensional vector of the “true” parameters used to
generate the synthetic data
ξ: the vector of control parameters, also known as the experi-
mental setup
g : the deterministic model
y i : the i th observation vector
ȳ = {y i}Mi=1: a set of observation vectors
εi : the additive independent and identically distributed (i.i.d.)
measurement noise
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Bayesian framework for experimental design and
expected information gain

Prior of parameters: p(θ).
Posterior (post experimental) of parameters by Bayes’ theorem:

p(θ|ȳ , ξ) =
p(ȳ |θ, ξ)p(θ)

p(ȳ)
.

Kullback-Leibler divergence (information gain) between prior
and posterior to measure the usefulness of an experiment

DKL :=

∫
Θ
log
(
p(θ|ȳ , ξ)

p(θ)

)
p(θ|ȳ , ξ)dθ .

(if p(θ|ȳ) = p(θ), then DKL = 0. )
Expected information gain :

I (ξ) =

∫
DKL p(ȳ |ξ)d ȳ .
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Double–loop Monte Carlo
The expected information gain can be rearranged as follows

I =

∫
Θ

∫
Y
log
(
p(ȳ |θ)

p(ȳ)

)
p(ȳ |θ)d ȳp(θ)dθ .

This integral can be evaluated using Monte Carlo sampling.

IDLMC =
1
No

No∑
I=1

log
(
p(ȳ I |θI )

p(ȳ I )

)
,

where θI is drawn from p(θ), ȳ I is drawn from p(ȳ |θI ). The
so-called “double–loop” comes from the nested Monte Carlo to
evaluate the marginal density

p(ȳ I ) =

∫
Θ
p(ȳ I |θ)p(θ)dθ ≈ 1

Ni

Ni∑
J=1

p(ȳ I |θJ) .
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Double–loop Monte Carlo

We have the following estimates:

Bias(IDLMC ) = E(IDLMC − I ) = O
(

1
Ni

)
Var(IDLMC ) = O

(
1
No

)
To control the MSE, enforcing Var(IDLMC ) + Bias(IDLMC )2 =
tol2

To achieve tolerance tol , the total work is No×Ni = O
(
tol−3)
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Laplace method and generalized Laplace
method
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Laplace approximation of I (ξ) for determined
models

Idea: use an asymptotic (with respect to the number of
experiments) to approximate the integration
Laplace Approximation:
Assuming nonzero second derivative and bounded third
derivative of f :∫

exp [Mf (x)] dx =
√

2π
M|f ′′(x0)|exp [Mf (x0)] +O

( 1
M

)
.

Hint:

f (x) = f (x0) + 1
2 f
′′(x0)(x − x0)2 +O

(
|x − x0|3

)
.
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Laplace approximation of I (ξ) for determined
models

Synthetic data model:

y i = g(θ0, ξ) + εi , i = 1, . . . ,M ,
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Figure 1: Posterior pdfs as M increases.
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Laplace approximation of I (ξ) for determined
models

Truncated Taylor expansion of log(p(θ|{y i})) leads to a normal dis-
tribution N (θ̂,Σ).

Theorem 1

I =

∫
Θ

∫
Y

[
−1
2
log((2π)d |Σ|)− d

2
− h(θ̂)− tr(Σ Hp(θ̂))

2

]
︸ ︷︷ ︸

DKL

p(ȳ |θ0)d ȳp(θ0)dθ0 +O
(

1
M2

)

Q. Long, M. Scavino, R. Tempone, S. Wang: Fast estimation of expected
information gains for Bayesian experimental designs based on Laplace
approximations, Computer Methods in Applied Mechanics and Engineering 259
(2013) 24-39.
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Under-determined models

So far, the results are useful when the Laplace approximation can
be applied: a dominant mode (or multiple equivalently dominant
modes) exists.
Question: How about the cases, where an non-informative
manifold exists?
Example 1: g = (θ2

1 + θ2
2)3ξ2 + (θ2

1 + θ2
2) exp[−|0.2− ξ|]

Example 2:

Figure 2: A cantilever beam.
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The non-informative manifold
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The definition of non-informative manifold

The definition of the manifold and a small region containing this
manifold 2 :

T (θ0) :={θ ∈ Θ ⊂ Rd : p(ȳ |θ)− p(ȳ |θ0) = 0} ,
ΩM(θ0) :={θ ∈ Rd : dist(θ,T (θ0)) ≤ `0M−α}

2The volume of ΩM(θ0) contracts to zero in a slower rate than the square
root of the number of replicate experiments M, i.e., α ∈ (0, 0.5).

18 / 51



Introduction Laplace method Generalized Laplace method Truncated Gaussian approximation Multi level monte carlo for OED Numerical examples Conclusions Reference

Local reparameterization

The diffeomorphism mapping: f : ΩMs,t → ΩM

Cost function: F (θ) := 1
2(g(θ)− g(θ0))TΣ−1

ε (g(θ)− g(θ0))

Hessian of F : H(f (0, t)) = [U V ] Λ [U V ]T

Local coordinate s: s = UT (θ − f (0, t))

Prior weight function: p(s, t) := pΘ(f (s, t))|J |
Posterior weight function: p(s, t|ȳ) := pΘ(f (s, t)|ȳ)|J |
Due to Bayes’ theorem, we have

p(s, t|ȳ) = p(ȳ |s,t)p(s,t)
p(ȳ) for (s, t) ∈ ΩMs,t
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Change of coordinates for the K–L divergence
(DKL)

Approximated K–L divergence using the local coordinates t and s:

DKL(ȳ) =

∫
Tt

∫
[−`0M−α, `0M−α]

log
(
p(s, t|ȳ)

p(s, t)

)
p(s|t, ȳ)p(t|ȳ)dsdt

+OP

(
e−M

`0δ
)
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Laplace approximation for the conditional
information gain

Gaussian approximations:

p̃(s|t, ȳ) = 1
(
√

2π)r |Σs|t |1/2
exp
[
−

(s−ŝ)T Σ−1
s|t (s−ŝ)

2

]
p̃(s, t|ȳ) = p(ŝ, t|ȳ) exp

[
−

(s−ŝ)T Σ−1
s|t (s−ŝ)

2

]
p̃(s, t) = p(ŝ, t) exp

[
∇ log p(ŝ, t)(s − ŝ) +

(s−ŝ)THp(ŝ,t)(s−ŝ)
2

]
The information gain DKL can be approximated by

DKL =

∫
Tt

∫
[−`0M−α,`0M−α]

log
(
p̃(s, t|ȳ)

p̃(s, t)

)
p̃(s|t, ȳ)ds︸ ︷︷ ︸

Ds|t

p(t|ȳ)dt

+OP

(
1
M

)
,

with

Ds|t = − log
(∫

Tt

p(ŝ, t)|Σs|t |1/2dt
)
− r

2
log(2π)− r

2
+OP(

1
M

) .
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Laplace approximation for the expected
information gain for under determined models

Theorem 2
The expected information gain can be expressed as

I =

∫
Θ

∫
Y
1ΩM

[
− log

(∫
Tt

p(ŝ, t)|Σs|t |1/2dt
)
− r

2
log(2π)− r

2

]
p(ȳ |θ0)p(θ0)d ȳdθ0 +O

(
1
M

)
,

where the error O
( 1
M

)
is dominated by the standard Laplace

approximation in s direction.

Q. Long, M. Scavino, R. Tempone, S. Wang: A Laplace Method for
Under-Determined Bayesian Optimal Experimental Designs. Computer
Methods in Applied Mechanics and Engineering 285 (2015) 849-876.
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Simplification of the integration over the manifold
Tt

Approximation of the conditional covariance matrix (by Woodbury’s
formula)

Σs|t =Σ̃s|t + OP(
1

M
√
M

)

Σ̃s|t =
1
M

{
UT

[
Jg (f (ŝ, t))TΣ−1

ε Jg (f (ŝ, t))
]
U
}−1

.

Note that |Σ̃s|t | is independent to t for a given value of s.
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Simplification of the integration over the manifold
Tt

Theorem 3
The expected information gain can be expressed as

I =

∫
Θ

∫
Y

1ΩM

[
− log

(∫
Tt

p(ŝ, t)dt
)
− 1

2
log |Σ̃s|t | −

r

2
log(2π)− r

2

]
p(ȳ |θ0)p(θ0)d ȳdθ0 +O

(
1
M

)
,

Σ̃s|t is independent to t.

Q. Long, M. Scavino, R. Tempone, S. Wang: A Laplace Method for
Under-Determined Bayesian Optimal Experimental Designs. Computer
Methods in Applied Mechanics and Engineering 285 (2015) 849-876.

24 / 51



Introduction Laplace method Generalized Laplace method Truncated Gaussian approximation Multi level monte carlo for OED Numerical examples Conclusions Reference

Simplification of the integration over the manifold
Tt

We can furthermore approximate the maximum posterior solution
of s for a given value of t, i.e., ŝ, by 0. The result 3 can be
simplified to the following result 4.

Theorem 4
The expected information gain can be approximated by

I =

∫
Θ

[
− log

(∫
Tt

p(0, t)dt
)
− 1

2
log |Σ̃s|t |

]
p(θ0)dθ0 −

r

2
log(2π)− r

2

+O
(

1
M

)
.

Q. Long, M. Scavino, R. Tempone, S. Wang: A Laplace Method for
Under-Determined Bayesian Optimal Experimental Designs. Computer
Methods in Applied Mechanics and Engineering 285 (2015) 849-876.
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Truncated Gaussian approximation
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Truncated Gaussian approximation
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Truncated Gaussian approximation

Theorem 5
The expected information gain can be approximated by

I (ξ) =

∫
Θ
D̃KL(θ0, ξ)p(θ0)dθ0 +O

(
1
Ne

)
,

with

D̃KL(θ0, ξ) =

∫
Θ

φ(θ|y)

p(θ)
φ(θ|y)dθ and φ(θ|y) =

p̃(θ|y , ξ)∫
Θ p̃(θ|y , ξ)dθ

.

F. Bisetti, D. Kim, O. Knio, Q. Long, R. Tempone: Optimal Bayesian
Experimental Design for Priors of Compact Support with Application to
Shock-Tube Experiments for Combustion Kinetics. International Journal for
Numerical Methods in Engineering (2016) DOI: 10.1002/nme.5211.
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Multi level monte carlo for OED
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General theory of multi level monte carlo

Telescopic sum of expectations:

E[PL] =
L∑

l=0

E[Pl − Pl−1],

where P−1 = 0.
The MLMC estimator of E(PL) reads

Y =
L∑

l=0

Yl =
L∑

l=0

1
Nl

Nl∑
n=1

(Pl(ωn)− Pl−1(ωn)) .
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General theory of multi level monte carlo
Theorem 6

Let P denote a RV and Pl its numerical approximation on level l. If there exist independent estimators
Yl based on Nl MC samples, each with expected cost Cl and variance Vl , and positive constants α, β,
γ, c1, c2, c3, such that α ≥ 1

2min(β, γ) and

i. |E[Pl − P]| ≤ c12−αl ,

ii. E[Yl ] =

{
E[P0] if l = 0
E[Pl − Pl−1] if l > 0

,

iii. Vl ≤ c22−βl ,

iv. Cl ≤ c32γl ,

then there exists a positive constant c4, such that for any TOL < e−1 there are values L and Nl for

which the multilevel estimator Y =
L∑

l=0
Yl has a mean-square-error with bound:

MSE := E[(Y − E[P])2] < TOL2

with a computational complexity C with bound:

E[C ] ≤


c4TOL−2 if β > γ

c4TOL−2(log TOL)2 if β = γ

c4TOL−2−(γ−β)/α if β < γ.

Monte Carlo Complexity:

O
(
TOL
−2− γ

α

)
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MLMC for nested integration
Recap:

IDLMC =
1
No

No∑
I=1

log
(
p(ȳ I |θI )

p(ȳ I )

)
,

This integral of expected information gain can be evaluated us-
ing the multi level estimator:

IMLMC =
∞∑
l=0

Yl ,

Yl =
1
Nol

Nol∑
i=1

[
log
(
p(ȳ i |θi )

pl(ȳ i )

)
− 1

2
log
(
p(ȳ i |θi )

pl−1(ȳ i )

)
− 1

2
log
(
p(ȳ i |θi )

pl−1(ȳ i )

)]
.

This estimator has a complexity of O(TOL−2) according to the the-
orem of MLMC.
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MLMC for Laplace method

Using discretization of the physical model to define level

E[PL] =
L∑

l=0

E[Pl − Pl−1], with P−1 = 0.

where

Pl(θ) =
1
2
log((2π)d |Σl(θ̂)|)− d

2
− h(θ), and

Σl(θ̂) ≈
(
NeJ l(θ̂)TΣ−1

ε J l(θ̂)−∇∇h(θ̂)
)−1

.
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Applications
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Illustrative example
y = (θ1 + θ2)3ξ2 + (θ1 + θ2) exp[−|0.2− ξ|] + ε , with
ε ∼ N (0, 10−3).
Gaussian mixture prior
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Figure 3: Left: the posterior pdf (M = 5); right: convergence. ξ = 1.
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Illustrative example
Log Gaussian mixture prior γ = log θ
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Figure 4: Left: the posterior pdf (M = 5); right: convergence. ξ = 1.
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Impedance tomography
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The parameters: piecewise linear conductivity field θ(x) controlled
by the random vector θ = (θ1, . . . , θ16)T .
Laplace equation: ∇ · q(x) = 0, q(x) = −θ(x)∇u(x)

Boundary conditions:

∫
aj

q · n dx = Ij , j = 1, ..., l ,

q · n = 0 on δΩN/
⋃l

j=1 aj∑l
j=1 Uj = 0 ,

∑l
j=1 Ij = 0

Measurement: yj = 1
|aj |
∫
aj
uh(x)dx + ε , j = 1, ..., l
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Impedance tomography

Similar to what we have done in the first example, we set the prior
as a mixture log Gaussian (γ = log θ) which adopts the following
form:

p(γ) = 0.5× p1(γ) + 0.5× p2(γ) , (1)

where p1(γ) is the pdf which has mean 0, and p2(γ) is the pdf of a
multivariate Gaussian with mean vector and covariance matrix as
follows
γ0(4) = γ0(7) = γ0(10) = γ0(13) = 2
γ0(i) = 0, i 6= 4, 7, 10, 13
Σp(4, 4) =
Σp(7, 7) = Σp(10, 10) = Σp(13, 13) = 1
Σp(i , i) = 0.01, i 6= 4, 7, 10, 13
Σp(i , j) = 0, i 6= j
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Impedance tomography
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Figure 5: Voltage iso–contours and current patterns generated by the
best and worst sensor placements.
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Seismic source inversion
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Figure 6: The two-layered spatial domain
D = [−10000, 10000]× [−15000, 0] with stress-free and non-reflecting
boundary conditions. An array of NR receivers are located on the ground
surface in equidistant recording points.

Q. Long, M. Motamed, R. Tempone: Fast Bayesian optimal experimental
design for seismic source inversion. Computer Methods in Applied Mechanics
and Engineering. 291 (2015) 123-145.
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Seismic source inversion

The parameters: the source location, moment tensor components,
and start time and frequency in the time function.
The forward problem: elastodynamic wave equations.
ρ(x)utt(t, x)−∇ · σ(u(t, x)) = f(t, x;θ) in [0,T ]× D,

σ(u) = λ(x)∇ · u I + µ(x) (∇u + (∇u)>)

Initial and boundary conditions:
u(0, x) = 0, ut(0, x) = 0 on {t = 0} × D,
σ(u(t, x)) · n̂ = 0 on [0,T ]× ∂D0,
ut(t, x) = B(x)σ(u(t, x)) · n̂ on [0,T ]× ∂D1.

Measurements: y = u + ε = (u1, . . . , ud)> + ε.
Source term: f(t, x;θ) = S(t)M∇δ(x− xs).
Priors:
θ1 ∼ U(−1000, 1000), θ2 ∼ U(−3000,−1000), θ3 ∼ U(0.5, 1.5),
θ4 ∼ U(3, 5), θ5, θ6, θ7 ∼ U(1013, 1015).
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Seismic source inversion
The experiment with dR = 1000 gives the maximum information.
Both lumping and sparsifying the seismograms give suboptimal
designs.
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Figure 7: The expected information gain, computed both by Monte
Carlo sampling (together with 99.7% confidence interval) and by sparse
quadrature, for 20 different design scenarios.
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Design of shock-tube experiments for combustion
kinetics

Forward model: A set of ordinary differential equations (ODE)
describing the ignition of a reactive mixture.
H + O2 −−⇀↽−− OH + O
Observable: maximum slope of the time history of water con-
centration
Reaction constant/rate:

k fj = AjT
bj exp (−Ej/RT ) .

F. Bisetti, D. Kim, O. Knio, Q. Long, R. Tempone: Optimal Bayesian
Experimental Design for Priors of Compact Support with Application to
Shock-Tube Experiments for Combustion Kinetics. International Journal for
Numerical Methods in Engineering (2016) DOI: 10.1002/nme.5211.
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Convergence test
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Figure 8: Convergence of the expected information gain of three
experiments with ξ1 = [1500, 5%]>, ξ2 = [1100, 0.5%]>,
ξ3 = [1500, 0.5%]> and σe = 0.25. The statistical error bars represent
95% confidence intervals.

Truncated Gaussian approximation reduces significantly the
error of direct Laplace method.
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Convergence and CPU time
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Figure 9: Left: convergence of the expected information gain; Right:
CPU time.
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Design of a single experiment

A

B

Figure 10: The expected information gain of a single experiment with
σe = 0.25. Note that the ranges of T0 and [H2]0 are normalized to
[−1, 1].
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Validation using legacy data
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Figure 11: (a) Posterior samples of A and E based on real data from a
single experiment: low (blue) and high (red) temperature designs. (b)
The probability densities of k at 1100 K and 1500 K. Data extracted
from Hong et al. 2011.

Higher temperature leads to higher concentration of pdf.
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Design of two experiments under different
temperatures

(a) (b)

Figure 12: Expected information gain for the two-run experimental
design problem. In both experiments, [H2]0 = 5%. (a): σe = 0.25 and
(b): σe = 0.025. The ranges of T01 and T02 are normalized to [−1, 1].

Level of measurement noise changes the optimal design.
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Comparison of DLMC, MLMC, LA+MC,
LA+MLMC
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Figure 13: Cost comparison between the different methods
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Conclusions

Extend Bayesian experimental design methodology based on the
Laplace approximation from classical scenario to under deter-
mined models.
(Generalized) Laplace method has huge computational advan-
tage over the nested integration.
Approximating the posterior by a truncated Gaussian distribu-
tion in the case of priors with compact supports.
Multi level approach should be used to accelerate computation
when there is a lack of measure concentration.
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