### Efficient Bayesian Optimal Experimental Design for Physical Models

#### Quan Long

#### United Technologies Research Center East Hartford, CT, USA

April 19, 2016 UTC Institute for Advanced Systems Engineering, University of Connecticut, Storrs, CT

- 2 Laplace method
- 3 Generalized Laplace method
- Truncated Gaussian approximation
- 5 Multi level monte carlo for OED
- 6 Numerical examples
- 7 Conclusions

#### 8 Reference

Introduction Laplace method Generalized Laplace method Truncated Gaussian approximation Multi level monte carlo

### Introduction



• Experimental design is important when resources are limited.

We first consider a linear regression model:

 $\mathbf{Y} = \mathbf{X} \mathbf{\theta} + \mathbf{\epsilon}$ 

The simple least square estimation: θ̂ = (X<sup>T</sup>X)<sup>-1</sup>X<sup>T</sup>Y
Cov(θ̂) = Σ = (X<sup>T</sup>X)<sup>-1</sup>

We want  $(\boldsymbol{X}^{T}\boldsymbol{X})^{-1}$  to be as "small" as possible.

Some alphabetic optimalities:

- A-optimality: minimize the trace of the covariance matrix  $tr(\Sigma)$
- C-optimality: minimize the variance of a predefined linear combination of parameters (β<sup>T</sup>Σ<sup>-1</sup>β)<sup>-1</sup>
- D-optimality: minimize the determinant of the covariance matrix Σ
- E-optimality: minimize the maximum eigenvalue of the covariance matrix max(σ<sub>ii</sub>)

Entropy based expected information gain in a Bayesian setting.

# Computational Challenges in OED for nonlinear systems

- The sampler
- The optimizer
- The forward problem solver

### **Major Notations**

- $p(\cdot)$ : probability density function
- $\theta$ : unknown parameter vector
- $\theta_0$ : the *d* dimensional vector of the "true" parameters used to generate the synthetic data
- ξ: the vector of control parameters, also known as the experimental setup
- g: the deterministic model
- $y_i$ : the  $i^{th}$  observation vector
- $\bar{y} = \{y_i\}_{i=1}^M$ : a set of observation vectors
- $\epsilon_i$ : the additive independent and identically distributed (i.i.d.) measurement noise

## Bayesian framework for experimental design and expected information gain

- Prior of parameters:  $p(\theta)$ .
- Posterior (post experimental) of parameters by Bayes' theorem:

$$p(oldsymbol{ heta}|ar{oldsymbol{y}},oldsymbol{\xi}) = rac{p(ar{oldsymbol{y}}|oldsymbol{ heta},oldsymbol{\xi})p(oldsymbol{ heta})}{p(ar{oldsymbol{y}})}$$

• Kullback-Leibler divergence (information gain) between prior and posterior to measure the usefulness of an experiment

$$D_{KL} := \int_{\mathbf{\Theta}} \log\left(rac{p(m{ heta}|m{ar{y}},m{\xi})}{p(m{ heta})}
ight) p(m{ heta}|m{ar{y}},m{\xi}) dm{ heta} \,.$$

(if  $p(\theta|\bar{y}) = p(\theta)$ , then  $D_{KL} = 0$ .)

• Expected information gain :

$$I(\boldsymbol{\xi}) = \int D_{KL} p(oldsymbol{y} | \boldsymbol{\xi}) doldsymbol{y} \,.$$

#### Double-loop Monte Carlo

• The expected information gain can be rearranged as follows

$$I = \int_{\Theta} \int_{\mathcal{Y}} \log \left( \frac{p(\bar{\boldsymbol{y}}|\boldsymbol{\theta})}{p(\bar{\boldsymbol{y}})} \right) p(\bar{\boldsymbol{y}}|\boldsymbol{\theta}) d\bar{\boldsymbol{y}} p(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

• This integral can be evaluated using Monte Carlo sampling.

$$I_{DLMC} = \frac{1}{N_o} \sum_{I=1}^{N_o} \log \left( \frac{p(\bar{\boldsymbol{y}}_I | \boldsymbol{\theta}_I)}{p(\bar{\boldsymbol{y}}_I)} \right),$$

where  $\theta_I$  is drawn from  $p(\theta)$ ,  $\bar{y}_I$  is drawn from  $p(\bar{y}|\theta_I)$ . The so-called "double–loop" comes from the nested Monte Carlo to evaluate the marginal density

$$p(\bar{\boldsymbol{y}}_I) = \int_{\boldsymbol{\Theta}} p(\bar{\boldsymbol{y}}_I | \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta} \approx \frac{1}{N_i} \sum_{J=1}^{N_i} p(\bar{\boldsymbol{y}}_I | \boldsymbol{\theta}_J) \,.$$

#### Double-loop Monte Carlo

We have the following estimates:

- Bias $(I_{DLMC}) = \mathbf{E}(I_{DLMC} I) = \mathcal{O}\left(\frac{1}{N_i}\right)$
- $Var(I_{DLMC}) = O\left(\frac{1}{N_o}\right)$
- To control the MSE, enforcing Var(*I*<sub>DLMC</sub>) + Bias(*I*<sub>DLMC</sub>)<sup>2</sup> = tol<sup>2</sup>
- To achieve tolerance *tol*, the total work is  $N_o \times N_i = O(tol^{-3})$

Introduction Laplace method Generalized Laplace method Truncated Gaussian approximation Multi level monte carlo

# Laplace method and generalized Laplace method

## Laplace approximation of $I(\xi)$ for determined models

Idea: use an asymptotic (with respect to the number of experiments) to approximate the integration Laplace Approximation: Assuming nonzero second derivative and bounded third derivative of f:

$$\int \exp\left[Mf(x)\right] dx = \sqrt{\frac{2\pi}{M|f''(x_0)|}} \exp\left[Mf(x_0)\right] + \mathcal{O}\left(\frac{1}{M}\right).$$

Hint:

$$f(x) = f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \mathcal{O}(|x - x_0|^3).$$

## Laplace approximation of $I(\xi)$ for determined models

Synthetic data model:



Figure 1: Posterior pdfs as *M* increases.

## Laplace approximation of $I(\xi)$ for determined models

• Truncated Taylor expansion of  $log(p(\theta|\{y_i\}))$  leads to a normal distribution  $\mathcal{N}(\hat{\theta}, \Sigma)$ .

Theorem 1  

$$I = \int_{\Theta} \int_{\mathcal{Y}} \left[ -\frac{1}{2} \log((2\pi)^{d} |\mathbf{\Sigma}|) - \frac{d}{2} - h(\hat{\theta}) - \frac{tr(\mathbf{\Sigma} \mathbf{H}_{p}(\hat{\theta}))}{2} \right]_{D_{KL}}$$

$$p(\bar{\mathbf{y}}|\theta_{0}) d\bar{\mathbf{y}} p(\theta_{0}) d\theta_{0} + \mathcal{O}\left(\frac{1}{M^{2}}\right)$$

Q. Long, M. Scavino, R. Tempone, S. Wang: Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations, *Computer Methods in Applied Mechanics and Engineering* 259 (2013) 24-39.

### **Under-determined models**

So far, the results are useful when the Laplace approximation can be applied: a dominant mode (or multiple equivalently dominant modes) exists.

**Question:** How about the cases, where an non-informative manifold exists?

Example 1:  $g = (\theta_1^2 + \theta_2^2)^3 \xi^2 + (\theta_1^2 + \theta_2^2) \exp[-|0.2 - \xi|]$ Example 2:



Figure 2: A cantilever beam.

### The non-informative manifold



#### The definition of non-informative manifold

The definition of the manifold and a small region containing this manifold  $^{\rm 2}$  :

$$\begin{split} \mathcal{T}(\boldsymbol{\theta}_0) &:= \left\{ \boldsymbol{\theta} \in \boldsymbol{\Theta} \subset \mathbb{R}^d \, : \, \rho(\bar{\boldsymbol{y}}|\boldsymbol{\theta}) - \rho(\bar{\boldsymbol{y}}|\boldsymbol{\theta}_0) = \boldsymbol{0} \right\}, \\ \Omega_M(\boldsymbol{\theta}_0) &:= \left\{ \boldsymbol{\theta} \in \mathbb{R}^d : dist(\boldsymbol{\theta}, \mathcal{T}(\boldsymbol{\theta}_0)) \leq \ell_0 M^{-\alpha} \right\} \end{split}$$

<sup>&</sup>lt;sup>2</sup>The volume of  $\Omega_M(\theta_0)$  contracts to zero in a slower rate than the square root of the number of replicate experiments M, i.e.,  $\alpha \in (0, 0.5)$ .

### Local reparameterization

• The diffeomorphism mapping: • Cost function:  $F(\theta) := \frac{1}{2}(g(\theta) - g(\theta_0))^T \Sigma_{\epsilon}^{-1}(g(\theta) - g(\theta_0))$ • Hessian of F: • Local coordinate s: • Prior weight function: • Posterior weight function: • Due to Bayes' theorem, we have  $p(s, t|\bar{y}) = \frac{p(\bar{y}|s,t)p(s,t)}{p(\bar{y})}$  for  $(s, t) \in \Omega_{Ms,t}$ 

# Change of coordinates for the K–L divergence $(D_{KL})$

Approximated K–L divergence using the local coordinates t and s:

$$D_{KL}(\bar{\boldsymbol{y}}) = \int_{T_t} \int_{[-\ell_0 M^{-\alpha}, \ \ell_0 M^{-\alpha}]} \log\left(\frac{p(\boldsymbol{s}, \boldsymbol{t}|\bar{\boldsymbol{y}})}{p(\boldsymbol{s}, \boldsymbol{t})}\right) p(\boldsymbol{s}|\boldsymbol{t}, \bar{\boldsymbol{y}}) p(\boldsymbol{t}|\bar{\boldsymbol{y}}) d\boldsymbol{s} d\boldsymbol{t} \\ + \mathcal{O}_P\left(e^{-M^{\ell_0 \delta}}\right)$$

### Laplace approximation for the conditional information gain Gaussian approximations:

$$\tilde{\rho}(\boldsymbol{s}|\boldsymbol{t},\bar{\boldsymbol{y}}) = \frac{1}{(\sqrt{2\pi})^{r}|\boldsymbol{\Sigma}_{s|t}|^{1/2}} \exp\left[-\frac{(\boldsymbol{s}-\hat{\boldsymbol{s}})^{T}\boldsymbol{\Sigma}_{s|t}^{-1}(\boldsymbol{s}-\hat{\boldsymbol{s}})}{2}\right]$$
$$\tilde{\rho}(\boldsymbol{s},\boldsymbol{t}|\bar{\boldsymbol{y}}) = \rho(\hat{\boldsymbol{s}},\boldsymbol{t}|\bar{\boldsymbol{y}}) \exp\left[-\frac{(\boldsymbol{s}-\hat{\boldsymbol{s}})^{T}\boldsymbol{\Sigma}_{s|t}^{-1}(\boldsymbol{s}-\hat{\boldsymbol{s}})}{2}\right]$$
$$\tilde{\rho}(\boldsymbol{s},\boldsymbol{t}) = \rho(\hat{\boldsymbol{s}},\boldsymbol{t}) \exp\left[\nabla\log\rho(\hat{\boldsymbol{s}},\boldsymbol{t})(\boldsymbol{s}-\hat{\boldsymbol{s}}) + \frac{(\boldsymbol{s}-\hat{\boldsymbol{s}})^{T}H_{\rho}(\hat{\boldsymbol{s}},\boldsymbol{t})(\boldsymbol{s}-\hat{\boldsymbol{s}})}{2}\right]$$

The information gain  $D_{KL}$  can be approximated by

$$D_{KL} = \int_{T_t} \underbrace{\int_{[-\ell_0 M^{-\alpha}, \ell_0 M^{-\alpha}]} \log\left(\frac{\tilde{p}(s, t|\bar{y})}{\tilde{p}(s, t)}\right) \tilde{p}(s|t, \bar{y}) ds}_{D_{s|t}} p(t|\bar{y}) dt + \mathcal{O}_P\left(\frac{1}{M}\right),$$

with

$$D_{s|t} = -\log\left(\int_{T_t} p(\hat{s}, t) |\mathbf{\Sigma}_{s|t}|^{1/2} dt\right) - \frac{r}{2} \log(2\pi) - \frac{r}{2} + \mathcal{O}_P(\frac{1}{M}).$$

# Laplace approximation for the expected information gain for under determined models

#### Theorem 2

The expected information gain can be expressed as

$$\begin{split} I &= \int_{\Theta} \int_{\mathcal{Y}} \mathbf{1}_{\Omega_{M}} \left[ -\log\left( \int_{\mathcal{T}_{t}} p(\hat{s}, t) | \mathbf{\Sigma}_{s|t} |^{1/2} dt \right) - \frac{r}{2} \log(2\pi) - \frac{r}{2} \right] \\ p(\bar{\mathbf{y}}|\theta_{0}) p(\theta_{0}) d\bar{\mathbf{y}} d\theta_{0} + \mathcal{O}\left(\frac{1}{M}\right) \,, \end{split}$$

where the error  $\mathcal{O}\left(\frac{1}{M}\right)$  is dominated by the standard Laplace approximation in **s** direction.

Q. Long, M. Scavino, R. Tempone, S. Wang: A Laplace Method for Under-Determined Bayesian Optimal Experimental Designs. *Computer Methods in Applied Mechanics and Engineering* 285 (2015) 849-876.

# Simplification of the integration over the manifold $T_t$

Approximation of the conditional covariance matrix (by Woodbury's formula)

$$\begin{split} \boldsymbol{\Sigma}_{\boldsymbol{s}|\boldsymbol{t}} = & \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{s}|\boldsymbol{t}} + O_{P}(\frac{1}{M\sqrt{M}}) \\ & \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{s}|\boldsymbol{t}} = & \frac{1}{M} \left\{ \boldsymbol{U}^{T} \left[ \boldsymbol{J}_{g}(\boldsymbol{f}(\hat{\boldsymbol{s}},\boldsymbol{t}))^{T} \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}}^{-1} \boldsymbol{J}_{g}(\boldsymbol{f}(\hat{\boldsymbol{s}},\boldsymbol{t})) \right] \boldsymbol{U} \right\}^{-1} \,. \end{split}$$

Note that  $|\tilde{\boldsymbol{\Sigma}}_{s|t}|$  is independent to t for a given value of s.

# Simplification of the integration over the manifold $T_t$

#### Theorem 3

The expected information gain can be expressed as

$$I = \int_{\Theta} \int_{\mathcal{Y}} \mathbf{1}_{\Omega_{M}} \left[ -\log\left(\int_{T_{t}} p(\hat{\mathbf{s}}, \mathbf{t}) d\mathbf{t}\right) - \frac{1}{2} \log|\tilde{\mathbf{\Sigma}}_{\mathbf{s}|\mathbf{t}}| - \frac{r}{2} \log(2\pi) - \frac{r}{2} \right]$$
$$p(\bar{\mathbf{y}}|\theta_{0})p(\theta_{0}) d\bar{\mathbf{y}}d\theta_{0} + \mathcal{O}\left(\frac{1}{M}\right),$$

•  $\tilde{\Sigma}_{s|t}$  is independent to t.

Q. Long, M. Scavino, R. Tempone, S. Wang: A Laplace Method for Under-Determined Bayesian Optimal Experimental Designs. *Computer Methods in Applied Mechanics and Engineering* 285 (2015) 849-876.

### Simplification of the integration over the manifold $T_t$

We can furthermore approximate the maximum posterior solution of s for a given value of t, i.e.,  $\hat{s}$ , by 0. The result 3 can be simplified to the following result 4.

#### Theorem 4

The expected information gain can be approximated by

$$I = \int_{\Theta} \left[ -\log\left(\int_{T_t} p(\mathbf{0}, t) dt\right) - \frac{1}{2} \log |\tilde{\mathbf{\Sigma}}_{s|t}| \right] p(\theta_0) d\theta_0 - \frac{r}{2} \log(2\pi) - \frac{r}{2} + \mathcal{O}\left(\frac{1}{M}\right).$$

Q. Long, M. Scavino, R. Tempone, S. Wang: A Laplace Method for Under-Determined Bayesian Optimal Experimental Designs. *Computer Methods in Applied Mechanics and Engineering* 285 (2015) 849-876. Introduction Laplace method Generalized Laplace method Truncated Gaussian approximation Multi level monte carlo

### Truncated Gaussian approximation

#### **Truncated Gaussian approximation**



#### Truncated Gaussian approximation

#### Theorem 5

The expected information gain can be approximated by

$$I(\boldsymbol{\xi}) = \int_{\boldsymbol{\Theta}} \tilde{D}_{\mathcal{KL}}(\boldsymbol{ heta}_0, \boldsymbol{\xi}) p(\boldsymbol{ heta}_0) d\boldsymbol{ heta}_0 + \mathcal{O}\left(rac{1}{N_e}
ight) \,,$$

#### with

$$\tilde{D}_{KL}(\boldsymbol{\theta}_0,\boldsymbol{\xi}) = \int_{\boldsymbol{\Theta}} \frac{\phi(\boldsymbol{\theta}|\boldsymbol{y})}{p(\boldsymbol{\theta})} \phi(\boldsymbol{\theta}|\boldsymbol{y}) d\boldsymbol{\theta} \quad \text{and} \quad \phi(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{\tilde{p}(\boldsymbol{\theta}|\boldsymbol{y},\boldsymbol{\xi})}{\int_{\boldsymbol{\Theta}} \tilde{p}(\boldsymbol{\theta}|\boldsymbol{y},\boldsymbol{\xi}) d\boldsymbol{\theta}}$$

F. Bisetti, D. Kim, O. Knio, Q. Long, R. Tempone: Optimal Bayesian Experimental Design for Priors of Compact Support with Application to Shock-Tube Experiments for Combustion Kinetics. *International Journal for Numerical Methods in Engineering* (2016) DOI: 10.1002/nme.5211.

Introduction Laplace method Generalized Laplace method Truncated Gaussian approximation Multi level monte carlo

### Multi level monte carlo for OED

#### General theory of multi level monte carlo

• Telescopic sum of expectations:

$$\mathbb{E}[P_L] = \sum_{l=0}^{L} \mathbb{E}[P_l - P_{l-1}],$$

where  $P_{-1} = 0$ .

• The MLMC estimator of  $\mathbb{E}(P_L)$  reads

$$Y = \sum_{l=0}^{L} Y_{l} = \sum_{l=0}^{L} \frac{1}{N_{l}} \sum_{n=1}^{N_{l}} (P_{l}(\omega_{n}) - P_{l-1}(\omega_{n})).$$

#### General theory of multi level monte carlo

#### Theorem 6

Let P denote a RV and P<sub>l</sub> its numerical approximation on level I. If there exist independent estimators  $Y_l$  based on N<sub>l</sub> MC samples, each with expected cost C<sub>l</sub> and variance V<sub>l</sub>, and positive constants  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $c_1$ ,  $c_2$ ,  $c_3$ , such that  $\alpha \geq \frac{1}{2}min(\beta, \gamma)$  and

i.  $|\mathbb{E}[P_l - P]| \leq c_1 2^{-\alpha l}$ , ii.  $\mathbb{E}[Y_l] = \begin{cases} \mathbb{E}[P_0] & \text{if } l = 0\\ \mathbb{E}[P_l - P_{l-1}] & \text{if } l > 0 \end{cases}$ , iii.  $V_l \leq c_2 2^{-\beta l}$ , iv.  $C_l \leq c_3 2^{\gamma l}$ ,

then there exists a positive constant  $c_4$ , such that for any  $TOL < e^{-1}$  there are values L and N<sub>I</sub> for which the multilevel estimator  $Y = \sum_{l=0}^{L} Y_l$  has a mean-square-error with bound:

$$MSE := \mathbb{E}[(Y - \mathbb{E}[P])^2] < TOL^2$$

with a computational complexity C with bound:

$$\mathbb{E}[C] \leq \begin{cases} c_4 TOL^{-2} & \text{if } \beta > \gamma \\ c_4 TOL^{-2} (\log TOL)^2 & \text{if } \beta = \gamma \\ c_4 TOL^{-2-(\gamma - \beta)/\alpha} & \text{if } \beta < \gamma \end{cases}$$

C

Monte Carlo Complexity:

$$\left(TOL^{-2-\frac{\gamma}{\alpha}}\right)$$
 31/51

### MLMC for nested integration

• Recap:

$$I_{DLMC} = \frac{1}{N_o} \sum_{l=1}^{N_o} \log \left( \frac{p(\bar{\boldsymbol{y}}_l | \boldsymbol{\theta}_l)}{p(\bar{\boldsymbol{y}}_l)} \right),$$

• This integral of expected information gain can be evaluated using the multi level estimator:

$$I_{MLMC} = \sum_{I=0}^{\infty} Y_I \,,$$

$$Y_{l} = \frac{1}{N_{ol}} \sum_{i=1}^{N_{ol}} \left[ \log \left( \frac{p(\bar{\boldsymbol{y}}_{i} | \boldsymbol{\theta}_{i})}{p_{l}(\bar{\boldsymbol{y}}_{i})} \right) - \frac{1}{2} \log \left( \frac{p(\bar{\boldsymbol{y}}_{i} | \boldsymbol{\theta}_{i})}{p_{l-1}(\bar{\boldsymbol{y}}_{i})} \right) - \frac{1}{2} \log \left( \frac{p(\bar{\boldsymbol{y}}_{i} | \boldsymbol{\theta}_{i})}{p_{l-1}(\bar{\boldsymbol{y}}_{i})} \right) \right]$$

 This estimator has a complexity of O(TOL<sup>-2</sup>) according to the theorem of MLMC.

#### MLMC for Laplace method

• Using discretization of the physical model to define level

$$\mathbb{E}[P_L] = \sum_{l=0}^{L} \mathbb{E}[P_l - P_{l-1}], \quad \text{with} \quad P_{-1} = 0.$$

where

$$P_{l}(\boldsymbol{\theta}) = \frac{1}{2} \log((2\pi)^{d} |\boldsymbol{\Sigma}_{l}(\hat{\boldsymbol{\theta}})|) - \frac{d}{2} - h(\boldsymbol{\theta}), \text{ and}$$
$$\boldsymbol{\Sigma}_{l}(\hat{\boldsymbol{\theta}}) \approx \left(N_{e} \boldsymbol{J}_{l}(\hat{\boldsymbol{\theta}})^{T} \boldsymbol{\Sigma}_{\epsilon}^{-1} \boldsymbol{J}_{l}(\hat{\boldsymbol{\theta}}) - \nabla \nabla h(\hat{\boldsymbol{\theta}})\right)^{-1}.$$

Introduction Laplace method Generalized Laplace method Truncated Gaussian approximation Multi level monte carlo

### Applications

#### **Illustrative example** $y = (\theta_1 + \theta_2)^3 \xi^2 + (\theta_1 + \theta_2) \exp[-|0.2 - \xi|] + \epsilon$ , with $\epsilon \sim \mathcal{N}(0, 10^{-3})$ . Gaussian mixture prior



Figure 3: Left: the posterior pdf (M = 5); right: convergence.  $\xi = 1$ .

#### Illustrative example

#### Log Gaussian mixture prior $\gamma = \log \theta$



Figure 4: Left: the posterior pdf (M = 5); right: convergence.  $\xi = 1$ .

#### Impedance tomography



The parameters: piecewise linear conductivity field  $\theta(\mathbf{x})$  controlled by the random vector  $\boldsymbol{\theta} = (\theta_1, \dots, \theta_{16})^T$ . Laplace equation:  $\nabla \cdot \boldsymbol{q}(\mathbf{x}) = 0$ ,  $\boldsymbol{q}(\mathbf{x}) = -\theta(\mathbf{x})\nabla u(\mathbf{x})$ Boundary conditions:  $\begin{bmatrix} \int_{a_j} \boldsymbol{q} \cdot \boldsymbol{n} \, d\mathbf{x} = I_j, & j = 1, \dots, I, \\ \boldsymbol{q} \cdot \boldsymbol{n} = 0 \quad \text{on} \quad \delta \Omega_N / \bigcup_{j=1}^l a_j \\ \sum_{j=1}^l U_j = 0, & \sum_{j=1}^l I_j = 0 \end{bmatrix}$ Measurement:  $y_j = \frac{1}{|a_j|} \int_{a_j} u_h(\mathbf{x}) d\mathbf{x} + \epsilon, \quad j = 1, \dots, I$ 

### Impedance tomography

Similar to what we have done in the first example, we set the prior as a mixture log Gaussian ( $\gamma = \log \theta$ ) which adopts the following form:

$$p(\gamma) = 0.5 \times p_1(\gamma) + 0.5 \times p_2(\gamma), \qquad (1)$$

where  $p_1(\gamma)$  is the pdf which has mean 0, and  $p_2(\gamma)$  is the pdf of a multivariate Gaussian with mean vector and covariance matrix as follows

$$\begin{split} \gamma_0(4) &= \gamma_0(7) = \gamma_0(10) = \gamma_0(13) = 2\\ \gamma_0(i) &= 0, i \neq 4, 7, 10, 13\\ \Sigma_p(4, 4) &= \\ \Sigma_p(7,7) &= \Sigma_p(10, 10) = \Sigma_p(13, 13) = 1\\ \Sigma_p(i, i) &= 0.01, i \neq 4, 7, 10, 13\\ \Sigma_p(i, j) &= 0, i \neq j \end{split}$$



#### Impedance tomography



Figure 5: Voltage iso-contours and current patterns generated by the best and worst sensor placements.

#### Seismic source inversion



Figure 6: The two-layered spatial domain  $D = [-10000, 10000] \times [-15000, 0]$  with stress-free and non-reflecting boundary conditions. An array of  $N_R$  receivers are located on the ground surface in equidistant recording points.

Q. Long, M. Motamed, R. Tempone: Fast Bayesian optimal experimental design for seismic source inversion. *Computer Methods in Applied Mechanics and Engineering*. 291 (2015) 123-145.

#### Seismic source inversion

The parameters: the source location, moment tensor components, and start time and frequency in the time function. The forward problem: elastodynamic wave equations.

 $\rho(\mathbf{x}) \mathbf{u}_{tt}(t, \mathbf{x}) - \nabla \cdot \boldsymbol{\sigma}(\mathbf{u}(t, \mathbf{x})) = \mathbf{f}(t, \mathbf{x}; \boldsymbol{\theta}) \quad \text{in } [0, T] \times D, \\ \boldsymbol{\sigma}(\mathbf{u}) = \lambda(\mathbf{x}) \nabla \cdot \mathbf{u} \ I + \mu(\mathbf{x}) \left( \nabla \mathbf{u} + (\nabla \mathbf{u})^\top \right)$ 

Initial and boundary conditions:

 $\begin{aligned} \mathbf{u}(0,\mathbf{x}) &= \mathbf{0}, \quad \mathbf{u}_t(0,\mathbf{x}) = \mathbf{0} \\ \boldsymbol{\sigma}(\mathbf{u}(t,\mathbf{x})) \cdot \hat{\mathbf{n}} &= \mathbf{0} \\ \mathbf{u}_t(t,\mathbf{x}) &= \boldsymbol{B}(\mathbf{x}) \, \boldsymbol{\sigma}(\mathbf{u}(t,\mathbf{x})) \cdot \hat{\mathbf{n}} \end{aligned}$ 

on 
$$\{t = 0\} \times D$$
,  
on  $[0, T] \times \partial D_0$ ,  
on  $[0, T] \times \partial D_1$ .

Measurements:  $\mathbf{y} = \mathbf{u} + \boldsymbol{\epsilon} = (u_1, \dots, u_d)^\top + \boldsymbol{\epsilon}$ . Source term:  $\mathbf{f}(t, \mathbf{x}; \boldsymbol{\theta}) = S(t) \mathbf{M} \nabla \delta(\mathbf{x} - \mathbf{x}_s)$ .

Priors:

 $\begin{array}{l} \theta_1 \sim \mathcal{U}(-1000, 1000), \ \theta_2 \sim \mathcal{U}(-3000, -1000), \ \theta_3 \sim \mathcal{U}(0.5, 1.5), \\ \theta_4 \sim \mathcal{U}(3, 5), \qquad \theta_5, \theta_6, \theta_7 \sim \mathcal{U}(10^{13}, 10^{15}). \end{array}$ 

#### Seismic source inversion

The experiment with  $d_R = 1000$  gives the maximum information. Both lumping and sparsifying the seismograms give suboptimal designs.



Figure 7: The expected information gain, computed both by Monte Carlo sampling (together with 99.7% confidence interval) and by sparse quadrature, for 20 different design scenarios.

## Design of shock-tube experiments for combustion kinetics

- Forward model: A set of ordinary differential equations (ODE) describing the ignition of a reactive mixture.
- $H + O_2 \Longrightarrow OH + O$
- Observable: maximum slope of the time history of water concentration
- Reaction constant/rate:

$$k_j^f = A_j T^{b_j} \exp\left(-E_j/\mathcal{R}T\right).$$

F. Bisetti, D. Kim, O. Knio, Q. Long, R. Tempone: Optimal Bayesian Experimental Design for Priors of Compact Support with Application to Shock-Tube Experiments for Combustion Kinetics. *International Journal for Numerical Methods in Engineering* (2016) DOI: 10.1002/nme.5211.



Figure 8: Convergence of the expected information gain of three experiments with  $\boldsymbol{\xi}_1 = [1500, 5\%]^{\top}$ ,  $\boldsymbol{\xi}_2 = [1100, 0.5\%]^{\top}$ ,  $\boldsymbol{\xi}_3 = [1500, 0.5\%]^{\top}$  and  $\sigma_e = 0.25$ . The statistical error bars represent 95% confidence intervals.

Truncated Gaussian approximation reduces significantly the error of direct Laplace method.

#### Convergence and CPU time



Figure 9: Left: convergence of the expected information gain; Right: CPU time.

Design of a single experiment



Figure 10: The expected information gain of a single experiment with  $\sigma_e = 0.25$ . Note that the ranges of  $T_0$  and  $[H_2]_0$  are normalized to [-1, 1].

### Validation using legacy data



Figure 11: (a) Posterior samples of A and E based on real data from a single experiment: low (blue) and high (red) temperature designs. (b) The probability densities of k at 1100 K and 1500 K. Data extracted from Hong et al. 2011.

Higher temperature leads to higher concentration of pdf.

## Design of two experiments under different temperatures



Figure 12: Expected information gain for the two-run experimental design problem. In both experiments,  $[H_2]_0 = 5\%$ . (a):  $\sigma_e = 0.25$  and (b):  $\sigma_e = 0.025$ . The ranges of  $T_{01}$  and  $T_{02}$  are normalized to [-1, 1].

Level of measurement noise changes the optimal design.

## Comparison of DLMC, MLMC, LA+MC, LA+MLMC



Figure 13: Cost comparison between the different methods

### Conclusions

- Extend Bayesian experimental design methodology based on the Laplace approximation from classical scenario to under determined models.
- (Generalized) Laplace method has huge computational advantage over the nested integration.
- Approximating the posterior by a truncated Gaussian distribution in the case of priors with compact supports.
- Multi level approach should be used to accelerate computation when there is a lack of measure concentration.

#### Reference

- Q. Long, M. Scavino, R. Tempone, S. Wang: Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations, *Computer Methods in Applied Mechanics and Engineering* 259 (2013) 24-39.
- Q. Long, M. Scavino, R. Tempone, S. Wang: A Laplace method for under-determined Bayesian optimal experimental designs. Computer Methods in Applied Mechanics and Engineering 285 (2015) 849-876.
- Q. Long, M. Motamed, R. Tempone: Fast Bayesian optimal design for seismic source inversion, Computer Methods in Applied Mechanics and Engineering 291 (2015) 123-145.
- F. Bisetti, D. Kim, O. Knio, Q. Long, R. Tempone: Optimal Bayesian experimental design for priors of compact support with application to shock-tube experiments for combustion kinetics. International Journal for Numerical Methods in Engineering (2016) DOI: 10.1002/nme.5211.
- B.M. Dia, L. Espath, C. B. Issaid, Q. Long, R. Tempone: A multi level computational approach for Bayesian Experimental Design, *In preparation* (2016).
- M. Giles: Multilevel Monte Carlo path simulation. Operations Research 56 (2008) 607-617.
- K. J. Ryan: Estimating expected information gains for experimental designs with application to the random fatigue-limit model. *Journal of Computational and Graphical Statistics* 12 (2003) 585-603.