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C. Bayer and J-P Katoen, Principles of Model Checking,  MIT Press, 2008

Model

Mathematical modeling

Model checking (verification)

Formalization

Temporal Logic Formula

Specification: “If x is set infinitely often, then y is set infinitely often.”

A classical problem in formal methods
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Process

Specification: “drive from A to B.”

Model

S. Sastry – Nonlinear Systems: analysis, stability, and control, Springer, 1999

Mathematical modeling

A

B

Formalization

Stabilization Problem: “make B an asymptotically stable equilibrium”

Control

A classical problem in dynamical systems



Formal methods vs. dynamical systems

Process

Model

Specification
“Drive from A to B.”“If x is set infinitely often, then

y is set infinitely often.”



Formal methods vs. dynamical systems

Process

Model

Specification

Simple

Complex

Complex

Simple

“Drive from A to B.”“If x is set infinitely often, then
y is set infinitely often.”



Need for formal methods in dynamical systems

x

y

z

phot o

upl oad

upl oad

unsaf e

ext i ngui sh

assi stUlusoy, Belta, RSS 2013, IJRR 2014

Vehicle Control 
Strategy?

Solution later in this talk

Spec: Off-line: “Keep taking photos and upload current photo before taking another 
photo. On-line: Unsafe regions should always be avoided. If fires are detected, then
they should be extinguished. If survivors are detected, then they should be provided 
medical assistance. If both fires and survivors are detected locally, priority should be 
given to the survivors.” 



Mission Specification: “ If a fire or survivor are located with enough certainty, then take photos 
and next upload them at upload regions (blue).  Always avoid obstacles (red regions). Type 1 (orange) 
or Type 2 (yellow) radiations area allowed, but not both.  After all fires have been localized with 
enough certainty and the data has been uploaded, return to recharging stations (green) 
and wait for redeployment. Minimize overall distance travelled.’’
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2

3

4

Vehicle Control / 
Communication 
Strategies

?

Need for formal methods in dynamical systems

Not in this talk

Jones, Schwager, Belta, ACC 2015
Leahy, Jones, Schwager, Belta, CDC 2015



Need for formal methods in dynamical systems

Coogan, et. al., ACC 2015, IEEE TCNS 2016
Sadradini, Belta, ACC 2016
Coogan, Arcak, Belta, ACC 2016

• eventually each link will have ≤30 vehicles 
• upstream link will have low demand until downstream link is no longer congested
• each queue at a junction will be actuated at least once every two minutes
• whenever the number of vehicles on link l exceeds C1, it is eventually the case 

that the number of vehicles on link l decreases below C2.” 

Traffic light 
control strategy?

Not in this talk



Need for formal methods in dynamical systems

Fuel Control System

[0,60) [9.7,59.7) 3 [0.1,59.7) 4 [0.5,59.7) 4F (( 0.875) ( 0.98) ( 0.29))G x G x G x    

i.e., “EGO is less than 0.875 for all times in between 9.7s and 59.7s and MAP 
is less than 0.98 for all times in between 0.1s and 59.7s and MAP is greater 
than 0.29 for all times in between 0.5s and 59.7s.

2. Supervised / unsupervised learning (good behavior)

1. Off-line  / on-line data collection

3. Monitoring and anomaly mitigation

Not in this talk
Jones, et.al., CDC 2014
Kong, et.al., HSCC 2014
Bombara, et.al., HSCC 2016

DENSO Corporation, Japan



Need for formal methods in dynamical systems

Haghighi, et.al., HSCC 2015 Not in this talk

1. Off-line  / on-line data collection

2. Supervised / unsupervised learning (good behavior)

“Always, for each of the four ‘neighborhoods’, the power 
consumption level m is below 300 and the power consumption is 
below 200 in each of the neighborhoods’ quadrants at least once per 
hour. After 6 hours, the power consumption in all residential areas 
is above level 3.” 

3. Monitoring and anomaly mitigation

Low Earth Orbit (LEO) satellites can gather 
temporal-spatial data (the figure shows the 
intense-traffic Strait of Gibraltar)
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(Fully-observable) nondeterministic (non-probabilistic) labeled transition 
systems with finitely many states and actions and fully observable state

Verification and control for finite systems
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Linear Temporal Logic (LTL)
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Verification and control for finite systems
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LTL model checking

Given a transition system and an LTL formula over its set of propositions, check if 
the language (i.e., all possible words) of the transition system starting from all initial 
states satisfies the formula.  

SPIN, NuSMV, PRISM, …

Verification and control for finite systems
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Verification and control for finite systems

Given a transition system and an LTL formula over its set of propositions, find a set 
of initial states and a control strategy for all initial states such that the produced 
language of the transition system satisfies the formula.  

LTL control
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State feedback 
control automaton

control

state

Büchi / Rabin games

Verification and control for finite systems

Particular cases (no need to play a game)
- Deterministic systems: adapted off-the-shelf model checking
- “Finite time” LTL specs (syntactically co-safe LTL): 

• Djistra’s algorithm for deterministic systems
• Fixed-point algorithms for non-deterministic systems
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LTL control

Optimal Temporal Logic Control for Finite Deterministic Systems
Optimal Temporal Logic Control for Finite MDPs
Temporal Logic Control for POMDPs
Temporal Logic Control and Learning

Extensions
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“Avoid the grey region for all 
times. Visit the blue region, 
then the green region, and then 
keep surveying the striped blue 
and green regions, in this order.”

Conservative Control for Dynamical Systems

1. Conservative abstractions for simple dynamics
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= TRUE should happen. After that, (pi3 = TRUE and
pi4  = TRUE) and then (pi1 = TRUE and pi3  = 
FALSE) should occur infinitely often.”

1. Conservative abstractions for simple dynamics

Assume that in each region 
we can check for the 
existence of / construct 
feedback controllers driving 
all states in finite time to a 
subset of facets (including 
the empty set – controller 
making the region an 
invariant)

Conservative Control for Dynamical Systems



“Avoid the grey region for all 
times. Visit the blue region, 
then the green region, and then 
keep surveying the striped blue 
and green regions, in this order.”

“(pi2 = TRUE and pi4 = FALSE and pi3 = FALSE) 
should never happen.  Then pi4 = TRUE and then pi1 
= TRUE should happen. After that, (pi3 = TRUE and
pi4  = TRUE) and then (pi1 = TRUE and pi3  = 
FALSE) should occur infinitely often.”

1. Conservative abstractions for simple dynamics

Conservative Control for Dynamical Systems



Feedback 

automaton

control

state

“Avoid the grey region for all 
times. Visit the blue region, 
then the green region, and then 
keep surveying the striped blue 
and green regions, in this order.”

“(pi2 = TRUE and pi4 = FALSE and pi3 = FALSE) 
should never happen.  Then pi4 = TRUE and then pi1 
= TRUE should happen. After that, (pi3 = TRUE and
pi4  = TRUE) and then (pi1 = TRUE and pi3  = 
FALSE) should occur infinitely often.”

1. Conservative abstractions for simple dynamics

Conservative Control for Dynamical Systems



Feedback 

automaton

Refinement

control

state

Feedback 
controller

region

Feedback 

hybrid 

automaton

“Avoid the grey region for all 
times. Visit the blue region, 
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and green regions, in this order.”

“(pi2 = TRUE and pi4 = FALSE and pi3 = FALSE) 
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= TRUE should happen. After that, (pi3 = TRUE and
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FALSE) should occur infinitely often.”

1. Conservative abstractions for simple dynamics
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Control-to-facet Stay-inside Control-to-set-of-facets Control-to-face Stay-inside

Control-to-facet Stay-inside

polyhedral

Library of controllers for polytopes

• checking for existence of controllers amounts to checking the non-emptiness of polyhedral sets in U 
• if controllers exist, they can be constructed everywhere in the polytopes by using simple formulas

C. Belta and L.C.G.J.M. Habets, IEEE TAC, 2006 

M. Kloetzer, L.C.G.J.M. Habets and C. Belta, CDC 2006

L.C.G.J.M. Habets and J. van Schuppen, Automatica 2005

Control-to-set-of-facets

1. Conservative abstractions for simple dynamics

Conservative Control for Dynamical Systems



2. Mapping complex dynamics to simple dynamics 
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Conservative Control for Dynamical Systems



“Always avoid black. Avoid red and
green until blue or cyan are reached. 
If blue is reached then eventually
visit green. If cyan is reached then 
eventually visit red.”

Conservative Control for Dynamical Systems



Conservative Control for Dynamical Systems

Quadrotor I/O Linearization Mellinger and Kumar, 2011.
Hoffmann, Waslander, and Tomlin, 2008.



Ulusoy, Marrazzo, Belta, 2013
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Spec: “Keep taking photos and upload
current photo before taking another 
photo. Unsafe regions should always be 
avoided. If fires are detected, then they 
should be extinguished. If survivors are 
detected, then they should be provided 
medical assistance. If both fires and 
survivors are detected locally, priority
should be given to the survivors.” 

Conservative Control for Dynamical Systems
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Finite quotients of continuous-space systems

(or                                     )
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“There is no trajectory reaching 
from green to red” – True or False?

Finite quotients of continuous-space systems

for all trajectories
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Finite quotients of continuous-space systems

or, at least

for all trajectories

“There is no trajectory reaching 
from green to red” – True or False?

ideally
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Finite quotients of continuous-space systems 

Assume we can decide whether 
there is a trajectory going from 
one region to an adjacent region

for all trajectories

“There is no trajectory reaching 
from green to red” – True or False?
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Finite quotients of continuous-space systems 

FALSE

for all trajectories

“There is no trajectory reaching 
from green to red” – True or False?
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Finite quotients of continuous-space systems 

TRUE FALSE

for all trajectories

“There is no trajectory reaching 
from green to red” – True or False?
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Finite quotients of continuous-space systems 

TRUE

Is there something wrong with the quotient?

FALSE

<

simulation

for all trajectories

“There is no trajectory reaching 
from green to red” – True or False?
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Finite quotients of continuous-space systems 

FALSETRUE

Is there something wrong with the quotient?

No, but it’s too “rough” for proving this particular property. 

<

simulation

for all trajectories

“There is no trajectory reaching 
from green to red” – True or False?
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Finite quotients of continuous-space systems 

Refinement is necessary.

TRUETRUE

<

simulation

for all trajectories

“There is no trajectory reaching 
from green to red” – True or False?



Finite quotients of continuous-space systems 

Refinement is necessary.

<

simulation



Iterative refinement (bisimulation) algorithm

While there exist      ,      such that 

remove 
add        ,

endwhile

Challenges:

If the algorithm terminates, the finite quotient and the original system are called bisimilar, and the 
quotient can be used in lieu of the original system for verification from very general specs 

Computability: set representation, computation of Pre, set intersection and difference, emptyness of sets

Termination: finite number of iterations

Decidability = Computability & Termination  -> very restrictive classes of systems (e.g., timed 
automata, multi-rate automata, o-minimal systems)

Finite quotients of continuous-space systems 

A. Bouajjani, J.-C. Fernandez, and N. Halbwachs, 1991.

R. Alur and D. L. Dill, 1994; R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, 1993; G. Lafferriere, G. J. Pappas, and S. Sastry, 2000.



While there exist      ,      such that 

remove 
add        ,        
construct the quotient
model check the quotient
if the spec is satisfied

break
endif

endwhile

Give up termination

Finite quotients of continuous-space systems 

Verification only against universal properties, i.e., if all the trajectories of the quotient satisfy a 
spec, then all the trajectories of the original system satisfy the spec. 

Computability: 

- Still limited to very restrictive classes (should allow for quantifier elimination)

- Computation is very expensive

G. Lafferriere, G. J. Pappas, and S. Yovine, 2001.

A. Chutinan and B. H. Krogh, 2001.



Give up computation of Pre

Finite quotients of continuous-space systems 

While TRUE        
construct (an over-approximation of) the quotient
model check the quotient
if the spec is satisfied

break;
endif
refine (using some

partitioning scheme)
endwhile

<
simulation

A. Tiwari and G. Khanna, 2002.

Continuous-time continuous-space polynomial dynamics and semi-algebraic regions (still requires 
quantifier elimination)

Continuous-time continuous-space affine and multi-affine dynamics and polytopic / rectangular  / regions

M. Kloetzer and C. Belta, HSCC 2006, TIMC 2012

L.C.G.J.M. Habets and J.H. van Schuppen, 2004; C. Belta and L.C.G.J.M. Habets, 2006

<
simulation
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- Can approximate nonlinear systems with arbitrary accuracy [Lin and Unbehauen, 1992].
- Under mild assumptions, PWA systems are equivalent with several other classes of hybrid 

systems, including mixed logical dynamical (MLD), linear complementarity (LC), extended 
linear complementarity (ELC), and maxmin-plus-scaling (MMPS) systems [Heemels et al., 
2001, Geyer et al., 2003]

- There exist tools for the identification of PWA systems from experimental data [Paoletti,  
Juloski, Ferrari-Trecate, Vidal, 2007]

polytopes

  

X i, iÎ I

xk+1 = Aixk +bi, xk Î Xi, iÎ I

   

X i

Discrete-time PWA systems 



Verification for discrete-time PWA systems 
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Verification for discrete-time PWA systems 

Everything is computable!
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Verification for discrete-time PWA systems 

Everything is computable!

B. Yordanov and C. Belta, IEEE TAC 2010

Can be optimized by checking with both    and        and 
partitioning only if necessary (no need to refine regions 
where the formula or its negation is satisfied at the 
corresponding state of the quotient). 
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polytopes

invertible
  

xk+1 = Aixk +bi, xk ÎXi, iÎ I

  

X i, iÎ I

  

Ai, iÎ I

What if                     ?

Everything still works with extra computational 
overhead.
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Verification for discrete-time PWA systems 

B. Yordanov and C. Belta, IEEE TAC 2010

Everything is computable!
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Problem Formulation: Find the largest subset of           such that all the trajectories

originating there satisfy an LTL formula    over   . 

   

f

   

I

polytopes

invertible
  

xk+1 = Aixk +bi, xk ÎXi, iÎ I
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What if                     and                      ?

  

bi ÎPi
b, iÎ I

Pre is not computable anymore. A polyhedral 
over-approximation of Post is computable. 

  

Ai ÎPi
A , iÎ I

  

Pi
b, iÎ I polytopes

  

Pi
A , iÎ I polytopes

While TRUE        
construct (an over-approximation of) the quotient
model check the quotient
if the spec is satisfied

break;
endif
refine (using arbitrary partitioning schemes)

endwhile

Verification for discrete-time PWA systems 

B. Yordanov and C. Belta, IEEE TAC 2010



Verification for discrete-time PWA systems 

Example: toggle switch



Initial satisfying states
Initial violating states

Matlab tool: “FaPAS”
(hyness.bu.edu/software)

Verification for discrete-time PWA systems 

Example: toggle switch

Fixed
parameters

1% param
uncertainty

10% param
uncertainty

B. Yordanov and C. Belta, IEEE TAC 2010



Stochastic systems  

Abstraction
Verification

(model 
checking)

Refinement

kkk wAxx 1
Dynamics

Initial partition 

of state space

Q

IMC

Specification 

(PCTL formula)

Qyes

Qno

Q?

set of states satisfy f

set of states don’t satisfy f

set of states may satisfy 

f

   

f

Verification for discrete-time linear systems 

Initial states 

that definitely, 

possibly, and 

never satisfy 

are shown in 

green, yellow, 

and red, 

respectively. 

Lahijanian, Andersson, Belta, IEEE TAC 2015

“With probability 0.90 or greater reach Destination through the regions that are 

not Obstacles and that have a probability of less than 0.05 to converge to a 

region with an Obstacle.”



Using Lyapunov functions to construct finite bisimulations

Verification for discrete-time systems 

Lyapunov sublevel sets



Verification for discrete-time systems 

Lyapunov sublevel sets

Algorithm: Slice the space in between two sublevel sets into N slices (N determined by the 
contraction rate); Starting from the inner-most slice, compute the pre-image of the slice and 
intersect it with all the other slices.

Theorem: At the ith iteration, the partition of the inner region bounded by the ith slice is a  
bisimulation. As a result, a bisimulation for the whole region is obtained in N steps

E. Aydin Gol, X.C. Ding,, M. Lazar, C. Belta ADHS 2012, CDC 2012, IEEE TAC 2014

Applicability: 
- we can only reason about the behavior of the system in between two sublevel sets (we should not 
mind that all trajectories of the system eventually disappear in the region closest to the origin)
- need to be able to compute the pre-image of a slice through the dynamics of the system and the 
intersections with other slices  

Using Lyapunov functions to construct finite bisimulations



  

xk+1 = Aixk +bi, xk ÎXi, iÎ I

Verification for discrete-time systems 
Using Lyapunov functions to construct finite bisimulations

Computability

Discrete-time PWA systems

Discrete-time switched linear systems

Lyapunov functions with polytopic sublevel sets can be constructed

Blanchini 1994, Lazar 2010
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Verification for discrete-time linear systems 

Example:

Purple: Sets of initial 
states for which there 
exists a switching 
strategy such that all 
trajectories satisfy the 
spec

Purple: Sets of 
initial states for 
which all 
trajectories satisfy 
the spec under all 
possible switches

Using Lyapunov functions to construct finite bisimulations

E. Aydin Gol, X.C. Ding,, M. Lazar, C. Belta ADHS 2012, CDC 2012, IEEE TAC 2014



Outline

Verification and control for finite systems

Conservative control for dynamical systems

Finite quotients of continuous-space systems: main ideas

Verification for discrete-time linear systems

Control for discrete-time linear systems

TL specification

verification /
control

abstraction

abstraction

verification /
control

TL specification



TL control for discrete-time linear systems 

polytopesX,Uxk+1 = Axk +Buk, xk Î X, uk ÎU

Problem Formulation: Find              and a state-feedback control strategy such that all 

trajectories of the closed loop system originating at      satisfy an LTL formula    over 

the linear predicates 
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Approach: Language-guided controller synthesis and refinement
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E. Aydin Gol, et.al., HSCC 2012, IEEE TAC 2014

TL control for discrete-time linear systems 

Dual



“Visit region A or region B before 
reaching the target while always 
avoiding the obstacles”

Example

E. Aydin Gol, et.al., HSCC 2012, IEEE TAC 2014

TL control for discrete-time linear systems 



Optimal TL control for discrete-time linear systems 
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Optimal TL control for discrete-time linear systems 

Problem Formulation: Find an optimal state-feedback control strategy such that the 

trajectory originating at      satisfies the formula.

Syntactically co-safe LTL formula over linear predicates pi

x0



Optimal TL control for discrete-time linear systems 

Approach
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Automaton 

paths:

• Solve an optimization problem for each 
automaton path.(at each stage)

• Progress constraint: Distance to a satisfying 
automaton state eventually decreases.

Refined dual automaton

E. Aydin Gol, M. Lazar, C. Belta, Automatica 2015



N = 2
total cost = 29.688

N = 4
total cost = 0.886

N = 6
total cost = 5.12

Reference trajectory 
violates the specificationReference trajectory

Controlled trajectory

“Visit region A or region B before 
reaching the target while always 
avoiding the obstacles”

Optimal TL control for discrete-time linear systems 

Example

E. Aydin Gol, M. Lazar, C. Belta, Automatica 2015



Summary
- Existing automata game algorithms can be adapted to produce control 

strategies for finite nondeterministic systems from LTL 
specifications

- Such strategies for finite systems can be directly used for to 
produce conservative control strategies 

- Non-conservative bisimulation-type algorithms can be used for 
verification and control of discrete-time linear systems

- Lyapunov functions can help with the construction of finite 
abstractions
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