
1

Formal Methods for Dynamical Systems

Calin Belta

Tegan Family Distinguished Professor
Mechanical Engineering, Systems Engineering,

Electrical and Computer Engineering
Boston University

Process

C. Bayer and J-P Katoen, Principles of Model Checking, MIT Press, 2008

A classical problem in formal methods

Process

C. Bayer and J-P Katoen, Principles of Model Checking, MIT Press, 2008

Specification: “If x is set infinitely often, then y is set infinitely often.”

A classical problem in formal methods

Process

C. Bayer and J-P Katoen, Principles of Model Checking, MIT Press, 2008

Specification: “If x is set infinitely often, then y is set infinitely often.”

Check if all the possible
behaviors of the circuit satisfy
the specification

A classical problem in formal methods

Process

C. Bayer and J-P Katoen, Principles of Model Checking, MIT Press, 2008

Specification: “If x is set infinitely often, then y is set infinitely often.”

Formalization

Temporal Logic Formula

A classical problem in formal methods

Process

C. Bayer and J-P Katoen, Principles of Model Checking, MIT Press, 2008

Model

Mathematical modeling

Formalization

Temporal Logic Formula

Specification: “If x is set infinitely often, then y is set infinitely often.”

A classical problem in formal methods

Process

C. Bayer and J-P Katoen, Principles of Model Checking, MIT Press, 2008

Model

Mathematical modeling

Model checking (verification)

Formalization

Temporal Logic Formula

Specification: “If x is set infinitely often, then y is set infinitely often.”

A classical problem in formal methods

Process

S. Sastry – Nonlinear Systems: analysis, stability, and control, Springer, 1999

A classical problem in dynamical systems

Process

Specification: “drive from A to B.”

A

B

S. Sastry – Nonlinear Systems: analysis, stability, and control, Springer, 1999

A classical problem in dynamical systems

Process

Specification: “drive from A to B.”

A

B

S. Sastry – Nonlinear Systems: analysis, stability, and control, Springer, 1999

A classical problem in dynamical systems

Generate a robot
control strategy

Process

Specification: “drive from A to B.”

Model

S. Sastry – Nonlinear Systems: analysis, stability, and control, Springer, 1999

Mathematical modeling

A

B

A classical problem in dynamical systems

Process

Specification: “drive from A to B.”

Model

S. Sastry – Nonlinear Systems: analysis, stability, and control, Springer, 1999

Mathematical modeling

A

B

Formalization

Stabilization Problem: “make B an asymptotically stable equilibrium”

A classical problem in dynamical systems

Process

Specification: “drive from A to B.”

Model

S. Sastry – Nonlinear Systems: analysis, stability, and control, Springer, 1999

Mathematical modeling

A

B

Formalization

Stabilization Problem: “make B an asymptotically stable equilibrium”

Control

A classical problem in dynamical systems

Formal methods vs. dynamical systems

Process

Model

Specification
“Drive from A to B.”“If x is set infinitely often, then

y is set infinitely often.”

Formal methods vs. dynamical systems

Process

Model

Specification

Simple

Complex

Complex

Simple

“Drive from A to B.”“If x is set infinitely often, then
y is set infinitely often.”

Need for formal methods in dynamical systems

x

y

z

phot o

upl oad

upl oad

unsaf e

ext i ngui sh

assi stUlusoy, Belta, RSS 2013, IJRR 2014

Vehicle Control
Strategy?

Solution later in this talk

Spec: Off-line: “Keep taking photos and upload current photo before taking another
photo. On-line: Unsafe regions should always be avoided. If fires are detected, then
they should be extinguished. If survivors are detected, then they should be provided
medical assistance. If both fires and survivors are detected locally, priority should be
given to the survivors.”

Mission Specification: “ If a fire or survivor are located with enough certainty, then take photos
and next upload them at upload regions (blue). Always avoid obstacles (red regions). Type 1 (orange)
or Type 2 (yellow) radiations area allowed, but not both. After all fires have been localized with
enough certainty and the data has been uploaded, return to recharging stations (green)
and wait for redeployment. Minimize overall distance travelled.’’

1

2

3

4

Vehicle Control /
Communication
Strategies

?

Need for formal methods in dynamical systems

Not in this talk

Jones, Schwager, Belta, ACC 2015
Leahy, Jones, Schwager, Belta, CDC 2015

Need for formal methods in dynamical systems

Coogan, et. al., ACC 2015, IEEE TCNS 2016
Sadradini, Belta, ACC 2016
Coogan, Arcak, Belta, ACC 2016

• eventually each link will have ≤30 vehicles
• upstream link will have low demand until downstream link is no longer congested
• each queue at a junction will be actuated at least once every two minutes
• whenever the number of vehicles on link l exceeds C1, it is eventually the case

that the number of vehicles on link l decreases below C2.”

Traffic light
control strategy?

Not in this talk

Need for formal methods in dynamical systems

Fuel Control System

[0,60) [9.7,59.7) 3 [0.1,59.7) 4 [0.5,59.7) 4F ((0.875) (0.98) (0.29))G x G x G x    

i.e., “EGO is less than 0.875 for all times in between 9.7s and 59.7s and MAP
is less than 0.98 for all times in between 0.1s and 59.7s and MAP is greater
than 0.29 for all times in between 0.5s and 59.7s.

2. Supervised / unsupervised learning (good behavior)

1. Off-line / on-line data collection

3. Monitoring and anomaly mitigation

Not in this talk
Jones, et.al., CDC 2014
Kong, et.al., HSCC 2014
Bombara, et.al., HSCC 2016

DENSO Corporation, Japan

Need for formal methods in dynamical systems

Haghighi, et.al., HSCC 2015 Not in this talk

1. Off-line / on-line data collection

2. Supervised / unsupervised learning (good behavior)

“Always, for each of the four ‘neighborhoods’, the power
consumption level m is below 300 and the power consumption is
below 200 in each of the neighborhoods’ quadrants at least once per
hour. After 6 hours, the power consumption in all residential areas
is above level 3.”

3. Monitoring and anomaly mitigation

Low Earth Orbit (LEO) satellites can gather
temporal-spatial data (the figure shows the
intense-traffic Strait of Gibraltar)

Outline

Verification and control for finite systems

Conservative control for dynamical systems

Finite quotients of continuous-space systems: main ideas

Verification for discrete-time linear systems

Control for discrete-time linear systems

TL specification

verification /
control

abstraction

abstraction

verification /
control

TL specification

Outline

Verification and control for finite systems

Conservative control for dynamical systems

Finite quotients of continuous-space systems: main ideas

Verification for discrete-time linear systems

Control for discrete-time linear systems

TL specification

verification /
control

abstraction

abstraction

verification /
control

TL specification

(Fully-observable) nondeterministic (non-probabilistic) labeled transition
systems with finitely many states and actions and fully observable state

Verification and control for finite systems

u1

q1

q2

{p1}

u3

{p2,p3}

{p1}

u4

u5

{p3,p 4}

q3

q4

u2

Linear Temporal Logic (LTL)

eventually always until

Syntax

Verification and control for finite systems

Linear Temporal Logic (LTL)

Word:

Syntax

Semantics

eventually always until

Verification and control for finite systems

Linear Temporal Logic (LTL)

Run (trajectory):

Word:

Syntax

Semantics

eventually always until

u1

q1

q2

{p1}

u3

{p2,p3}

{p1}

u4

u5

{p3,p 4}

q3

q4

u2

Verification and control for finite systems

27

LTL model checking

Given a transition system and an LTL formula over its set of propositions, check if
the language (i.e., all possible words) of the transition system starting from all initial
states satisfies the formula.

SPIN, NuSMV, PRISM, …

Verification and control for finite systems

q1

q2

{p1}

{p2,p3}

{p1}

{p3,p 4}

q3

q4

Verification and control for finite systems

Given a transition system and an LTL formula over its set of propositions, find a set
of initial states and a control strategy for all initial states such that the produced
language of the transition system satisfies the formula.

LTL control

u1

q1

q2

{p1}

u3

{p2,p3}

{p1}

u4

u5

{p3,p 4}

q3

q4

u2

29

State feedback
control automaton

control

state

Büchi / Rabin games

Verification and control for finite systems

Particular cases (no need to play a game)
- Deterministic systems: adapted off-the-shelf model checking
- “Finite time” LTL specs (syntactically co-safe LTL):

• Djistra’s algorithm for deterministic systems
• Fixed-point algorithms for non-deterministic systems

u1

q1

q2

{p1}

u3

{p2,p3}

{p1}

u4

u5

{p3,p 4}

q3

q4

u2

LTL control

Optimal Temporal Logic Control for Finite Deterministic Systems
Optimal Temporal Logic Control for Finite MDPs
Temporal Logic Control for POMDPs
Temporal Logic Control and Learning

Extensions

Outline

Verification and control for finite systems

Conservative control for dynamical systems

Finite quotients of continuous-space systems: main ideas

Verification for discrete-time linear systems

Control for discrete-time linear systems

TL specification

verification /
control

abstraction

abstraction

verification /
control

TL specification

“Avoid the grey region for all
times. Visit the blue region,
then the green region, and then
keep surveying the striped blue
and green regions, in this order.”

Conservative Control for Dynamical Systems

1. Conservative abstractions for simple dynamics

“Avoid the grey region for all
times. Visit the blue region,
then the green region, and then
keep surveying the striped blue
and green regions, in this order.”

“(pi2 = TRUE and pi4 = FALSE and pi3 = FALSE)
should never happen. Then pi4 = TRUE and then pi1
= TRUE should happen. After that, (pi3 = TRUE and
pi4 = TRUE) and then (pi1 = TRUE and pi3 =
FALSE) should occur infinitely often.”

1. Conservative abstractions for simple dynamics

Conservative Control for Dynamical Systems

“Avoid the grey region for all
times. Visit the blue region,
then the green region, and then
keep surveying the striped blue
and green regions, in this order.”

“(pi2 = TRUE and pi4 = FALSE and pi3 = FALSE)
should never happen. Then pi4 = TRUE and then pi1
= TRUE should happen. After that, (pi3 = TRUE and
pi4 = TRUE) and then (pi1 = TRUE and pi3 =
FALSE) should occur infinitely often.”

1. Conservative abstractions for simple dynamics

Conservative Control for Dynamical Systems

“Avoid the grey region for all
times. Visit the blue region,
then the green region, and then
keep surveying the striped blue
and green regions, in this order.”

“(pi2 = TRUE and pi4 = FALSE and pi3 = FALSE)
should never happen. Then pi4 = TRUE and then pi1
= TRUE should happen. After that, (pi3 = TRUE and
pi4 = TRUE) and then (pi1 = TRUE and pi3 =
FALSE) should occur infinitely often.”

1. Conservative abstractions for simple dynamics

Conservative Control for Dynamical Systems

“Avoid the grey region for all
times. Visit the blue region,
then the green region, and then
keep surveying the striped blue
and green regions, in this order.”

“(pi2 = TRUE and pi4 = FALSE and pi3 = FALSE)
should never happen. Then pi4 = TRUE and then pi1
= TRUE should happen. After that, (pi3 = TRUE and
pi4 = TRUE) and then (pi1 = TRUE and pi3 =
FALSE) should occur infinitely often.”

1. Conservative abstractions for simple dynamics

Assume that in each region
we can check for the
existence of / construct
feedback controllers driving
all states in finite time to a
subset of facets (including
the empty set – controller
making the region an
invariant)

Conservative Control for Dynamical Systems

“Avoid the grey region for all
times. Visit the blue region,
then the green region, and then
keep surveying the striped blue
and green regions, in this order.”

“(pi2 = TRUE and pi4 = FALSE and pi3 = FALSE)
should never happen. Then pi4 = TRUE and then pi1
= TRUE should happen. After that, (pi3 = TRUE and
pi4 = TRUE) and then (pi1 = TRUE and pi3 =
FALSE) should occur infinitely often.”

1. Conservative abstractions for simple dynamics

Conservative Control for Dynamical Systems

Feedback

automaton

control

state

“Avoid the grey region for all
times. Visit the blue region,
then the green region, and then
keep surveying the striped blue
and green regions, in this order.”

“(pi2 = TRUE and pi4 = FALSE and pi3 = FALSE)
should never happen. Then pi4 = TRUE and then pi1
= TRUE should happen. After that, (pi3 = TRUE and
pi4 = TRUE) and then (pi1 = TRUE and pi3 =
FALSE) should occur infinitely often.”

1. Conservative abstractions for simple dynamics

Conservative Control for Dynamical Systems

Feedback

automaton

Refinement

control

state

Feedback
controller

region

Feedback

hybrid

automaton

“Avoid the grey region for all
times. Visit the blue region,
then the green region, and then
keep surveying the striped blue
and green regions, in this order.”

“(pi2 = TRUE and pi4 = FALSE and pi3 = FALSE)
should never happen. Then pi4 = TRUE and then pi1
= TRUE should happen. After that, (pi3 = TRUE and
pi4 = TRUE) and then (pi1 = TRUE and pi3 =
FALSE) should occur infinitely often.”

1. Conservative abstractions for simple dynamics

Conservative Control for Dynamical Systems

39

Control-to-facet Stay-inside Control-to-set-of-facets Control-to-face Stay-inside

Control-to-facet Stay-inside

polyhedral

Library of controllers for polytopes

• checking for existence of controllers amounts to checking the non-emptiness of polyhedral sets in U
• if controllers exist, they can be constructed everywhere in the polytopes by using simple formulas

C. Belta and L.C.G.J.M. Habets, IEEE TAC, 2006

M. Kloetzer, L.C.G.J.M. Habets and C. Belta, CDC 2006

L.C.G.J.M. Habets and J. van Schuppen, Automatica 2005

Control-to-set-of-facets

1. Conservative abstractions for simple dynamics

Conservative Control for Dynamical Systems

2. Mapping complex dynamics to simple dynamics



d
x

}{F

}{M



d
x

d
x

q

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

cosq

sinq

0

é

ë

ê
ê
ê

ù

û

ú
ú
ú
w

1
+

0

0

1

é

ë

ê
ê
ê

ù

û

ú
ú
ú
w

2

1

2

w
w W

w

 
  
 

x =u u U

1 Tw E R u
1 0

0
E



 
  
 

x = REw

J. Desai, J.P. Ostrowski, and V. Kumar. ICRA, 1998.

Conservative Control for Dynamical Systems

“Always avoid black. Avoid red and
green until blue or cyan are reached.
If blue is reached then eventually
visit green. If cyan is reached then
eventually visit red.”

Conservative Control for Dynamical Systems

Conservative Control for Dynamical Systems

Quadrotor I/O Linearization Mellinger and Kumar, 2011.
Hoffmann, Waslander, and Tomlin, 2008.

Ulusoy, Marrazzo, Belta, 2013

x

y

z

phot o

upl oad

upl oad

unsaf e

ext i ngui sh

assi st

Spec: “Keep taking photos and upload
current photo before taking another
photo. Unsafe regions should always be
avoided. If fires are detected, then they
should be extinguished. If survivors are
detected, then they should be provided
medical assistance. If both fires and
survivors are detected locally, priority
should be given to the survivors.”

Conservative Control for Dynamical Systems

Outline

Verification and control for finite systems

Conservative control for dynamical systems

Finite quotients of continuous-space systems: main ideas

Verification for discrete-time linear systems

Control for discrete-time linear systems

TL specification

verification /
control

abstraction

abstraction

verification /
control

TL specification

45

Finite quotients of continuous-space systems

(or)

46

“There is no trajectory reaching
from green to red” – True or False?

Finite quotients of continuous-space systems

for all trajectories

47

Finite quotients of continuous-space systems

for all trajectories

“There is no trajectory reaching
from green to red” – True or False?

48

Finite quotients of continuous-space systems

for all trajectories

“There is no trajectory reaching
from green to red” – True or False?

49

Finite quotients of continuous-space systems

or, at least

for all trajectories

“There is no trajectory reaching
from green to red” – True or False?

ideally

50

Finite quotients of continuous-space systems

Assume we can decide whether
there is a trajectory going from
one region to an adjacent region

for all trajectories

“There is no trajectory reaching
from green to red” – True or False?

51

Finite quotients of continuous-space systems

FALSE

for all trajectories

“There is no trajectory reaching
from green to red” – True or False?

52

Finite quotients of continuous-space systems

FALSE

for all trajectories

“There is no trajectory reaching
from green to red” – True or False?

53

Finite quotients of continuous-space systems

TRUE FALSE

for all trajectories

“There is no trajectory reaching
from green to red” – True or False?

54

Finite quotients of continuous-space systems

TRUE

Is there something wrong with the quotient?

FALSE

<

simulation

for all trajectories

“There is no trajectory reaching
from green to red” – True or False?

55

Finite quotients of continuous-space systems

FALSETRUE

Is there something wrong with the quotient?

No, but it’s too “rough” for proving this particular property.

<

simulation

for all trajectories

“There is no trajectory reaching
from green to red” – True or False?

56

Finite quotients of continuous-space systems

Refinement is necessary.

TRUETRUE

<

simulation

for all trajectories

“There is no trajectory reaching
from green to red” – True or False?

Finite quotients of continuous-space systems

Refinement is necessary.

<

simulation

Iterative refinement (bisimulation) algorithm

While there exist , such that

remove
add ,

endwhile

Challenges:

If the algorithm terminates, the finite quotient and the original system are called bisimilar, and the
quotient can be used in lieu of the original system for verification from very general specs

Computability: set representation, computation of Pre, set intersection and difference, emptyness of sets

Termination: finite number of iterations

Decidability = Computability & Termination -> very restrictive classes of systems (e.g., timed
automata, multi-rate automata, o-minimal systems)

Finite quotients of continuous-space systems

A. Bouajjani, J.-C. Fernandez, and N. Halbwachs, 1991.

R. Alur and D. L. Dill, 1994; R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, 1993; G. Lafferriere, G. J. Pappas, and S. Sastry, 2000.

While there exist , such that

remove
add ,
construct the quotient
model check the quotient
if the spec is satisfied

break
endif

endwhile

Give up termination

Finite quotients of continuous-space systems

Verification only against universal properties, i.e., if all the trajectories of the quotient satisfy a
spec, then all the trajectories of the original system satisfy the spec.

Computability:

- Still limited to very restrictive classes (should allow for quantifier elimination)

- Computation is very expensive

G. Lafferriere, G. J. Pappas, and S. Yovine, 2001.

A. Chutinan and B. H. Krogh, 2001.

Give up computation of Pre

Finite quotients of continuous-space systems

While TRUE
construct (an over-approximation of) the quotient
model check the quotient
if the spec is satisfied

break;
endif
refine (using some

partitioning scheme)
endwhile

<
simulation

A. Tiwari and G. Khanna, 2002.

Continuous-time continuous-space polynomial dynamics and semi-algebraic regions (still requires
quantifier elimination)

Continuous-time continuous-space affine and multi-affine dynamics and polytopic / rectangular / regions

M. Kloetzer and C. Belta, HSCC 2006, TIMC 2012

L.C.G.J.M. Habets and J.H. van Schuppen, 2004; C. Belta and L.C.G.J.M. Habets, 2006

<
simulation

Outline

Verification and control for finite systems

Conservative control for dynamical systems

Finite quotients of continuous-space systems: main ideas

Verification for discrete-time linear systems

Control for discrete-time linear systems

TL specification

verification /
control

abstraction

abstraction

verification /
control

TL specification

- Can approximate nonlinear systems with arbitrary accuracy [Lin and Unbehauen, 1992].
- Under mild assumptions, PWA systems are equivalent with several other classes of hybrid

systems, including mixed logical dynamical (MLD), linear complementarity (LC), extended
linear complementarity (ELC), and maxmin-plus-scaling (MMPS) systems [Heemels et al.,
2001, Geyer et al., 2003]

- There exist tools for the identification of PWA systems from experimental data [Paoletti,
Juloski, Ferrari-Trecate, Vidal, 2007]

polytopes

X i, iÎ I

xk+1 = Aixk +bi, xk Î Xi, iÎ I

X i

Discrete-time PWA systems

Verification for discrete-time PWA systems

polytopes

X i, iÎ I

Ai, iÎ I

xk+1 = Aixk +bi, xk ÎXi, iÎ I

X i

invertible

X j

X i

polytopes

invertible

xk+1 = Aixk +bi, xk ÎXi, iÎ I

X i, iÎ I

Ai, iÎ I

Verification for discrete-time PWA systems

Everything is computable!

X j

X i

Problem Formulation: Find the largest subset of such that all the trajectories

originating there satisfy an LTL formula over .

f

I

polytopes

invertible

xk+1 = Aixk +bi, xk ÎXi, iÎ I

X i, iÎ I

Ai, iÎ I

Verification for discrete-time PWA systems

Everything is computable!

X j

X i

Problem Formulation: Find the largest subset of such that all the trajectories

originating there satisfy an LTL formula over .

f

I

f

Øf

polytopes

invertible

xk+1 = Aixk +bi, xk ÎXi, iÎ I

X i, iÎ I

Ai, iÎ I

Verification for discrete-time PWA systems

Everything is computable!

B. Yordanov and C. Belta, IEEE TAC 2010

Can be optimized by checking with both and and
partitioning only if necessary (no need to refine regions
where the formula or its negation is satisfied at the
corresponding state of the quotient).

X j

X i

Problem Formulation: Find the largest subset of such that all the trajectories

originating there satisfy an LTL formula over .

f

I

Can be optimized by checking with both and and
partitioning only if necessary (no need to refine regions
where the formula or its negation is satisfied at the
corresponding state of the quotient).

f

Øf

polytopes

invertible

xk+1 = Aixk +bi, xk ÎXi, iÎ I

X i, iÎ I

Ai, iÎ I

What if ?

Everything still works with extra computational
overhead.

bi ÎPi
b, iÎ I

Pi
b, iÎ I polytopes

Verification for discrete-time PWA systems

B. Yordanov and C. Belta, IEEE TAC 2010

Everything is computable!

X j

X i

Problem Formulation: Find the largest subset of such that all the trajectories

originating there satisfy an LTL formula over .

f

I

polytopes

invertible

xk+1 = Aixk +bi, xk ÎXi, iÎ I

X i, iÎ I

Ai, iÎ I

What if and ?

bi ÎPi
b, iÎ I

Pre is not computable anymore. A polyhedral
over-approximation of Post is computable.

Ai ÎPi
A , iÎ I

Pi
b, iÎ I polytopes

Pi
A , iÎ I polytopes

While TRUE
construct (an over-approximation of) the quotient
model check the quotient
if the spec is satisfied

break;
endif
refine (using arbitrary partitioning schemes)

endwhile

Verification for discrete-time PWA systems

B. Yordanov and C. Belta, IEEE TAC 2010

Verification for discrete-time PWA systems

Example: toggle switch

Initial satisfying states
Initial violating states

Matlab tool: “FaPAS”
(hyness.bu.edu/software)

Verification for discrete-time PWA systems

Example: toggle switch

Fixed
parameters

1% param
uncertainty

10% param
uncertainty

B. Yordanov and C. Belta, IEEE TAC 2010

Stochastic systems

Abstraction
Verification

(model
checking)

Refinement

kkk wAxx 1
Dynamics

Initial partition

of state space

Q

IMC

Specification

(PCTL formula)

Qyes

Qno

Q?

set of states satisfy f

set of states don’t satisfy f

set of states may satisfy

f

f

Verification for discrete-time linear systems

Initial states

that definitely,

possibly, and

never satisfy

are shown in

green, yellow,

and red,

respectively.

Lahijanian, Andersson, Belta, IEEE TAC 2015

“With probability 0.90 or greater reach Destination through the regions that are

not Obstacles and that have a probability of less than 0.05 to converge to a

region with an Obstacle.”

Using Lyapunov functions to construct finite bisimulations

Verification for discrete-time systems

Lyapunov sublevel sets

Verification for discrete-time systems

Lyapunov sublevel sets

Algorithm: Slice the space in between two sublevel sets into N slices (N determined by the
contraction rate); Starting from the inner-most slice, compute the pre-image of the slice and
intersect it with all the other slices.

Theorem: At the ith iteration, the partition of the inner region bounded by the ith slice is a
bisimulation. As a result, a bisimulation for the whole region is obtained in N steps

E. Aydin Gol, X.C. Ding,, M. Lazar, C. Belta ADHS 2012, CDC 2012, IEEE TAC 2014

Applicability:
- we can only reason about the behavior of the system in between two sublevel sets (we should not
mind that all trajectories of the system eventually disappear in the region closest to the origin)
- need to be able to compute the pre-image of a slice through the dynamics of the system and the
intersections with other slices

Using Lyapunov functions to construct finite bisimulations

xk+1 = Aixk +bi, xk ÎXi, iÎ I

Verification for discrete-time systems
Using Lyapunov functions to construct finite bisimulations

Computability

Discrete-time PWA systems

Discrete-time switched linear systems

Lyapunov functions with polytopic sublevel sets can be constructed

Blanchini 1994, Lazar 2010

Xi

Ai, bi

Ai, iÎ S

Verification for discrete-time linear systems

Example:

Purple: Sets of initial
states for which there
exists a switching
strategy such that all
trajectories satisfy the
spec

Purple: Sets of
initial states for
which all
trajectories satisfy
the spec under all
possible switches

Using Lyapunov functions to construct finite bisimulations

E. Aydin Gol, X.C. Ding,, M. Lazar, C. Belta ADHS 2012, CDC 2012, IEEE TAC 2014

Outline

Verification and control for finite systems

Conservative control for dynamical systems

Finite quotients of continuous-space systems: main ideas

Verification for discrete-time linear systems

Control for discrete-time linear systems

TL specification

verification /
control

abstraction

abstraction

verification /
control

TL specification

TL control for discrete-time linear systems

polytopesX,Uxk+1 = Axk +Buk, xk Î X, uk ÎU

Problem Formulation: Find and a state-feedback control strategy such that all

trajectories of the closed loop system originating at satisfy an LTL formula over

the linear predicates

X0 Í X

f

X0

U

X

p1

Øp1

p2

Øp2

p3

Øp3

pi

Approach: Language-guided controller synthesis and refinement

q4 q3

q2

q1

9

5

1

J(q2) = 0

J(q1) =1

J(q3) =10

J(q4) =15
Refinement:

q1

q2

q3

9

¥¥

J(q2) = 0

J(q1) = ¥ J(q3) = ¥

(Øp4 Ù p2 Ù p1 Ù p0)Ú

(p4 ÙØp3 Ù p2 Ù p1 Ù p0)0

(p4 Ù p3 Ù p2 Ù p1)

1

q1

q2
Controller

Synthesis

¥

J(q2) = 0

J(q1) = ¥
q1

q2

15 ¥

¥

¥

E. Aydin Gol, et.al., HSCC 2012, IEEE TAC 2014

TL control for discrete-time linear systems

Dual

“Visit region A or region B before
reaching the target while always
avoiding the obstacles”

Example

E. Aydin Gol, et.al., HSCC 2012, IEEE TAC 2014

TL control for discrete-time linear systems

Optimal TL control for discrete-time linear systems

X

U

X

p1

Øp1

p2

Øp2

p3

Øp3

U

Optimal TL control for discrete-time linear systems

Problem Formulation: Find an optimal state-feedback control strategy such that the

trajectory originating at satisfies the formula.

Syntactically co-safe LTL formula over linear predicates pi

x0

Optimal TL control for discrete-time linear systems

Approach

q4 q3

q2

q1

9

5

1

J(q2) = 0

J(q1) =1

J(q3) =10

J(q4) =15

15

82

q4q4q4

q4q4q3

q4q3q3

q4q3q1

q4q4q1

q4q1q1

q4q1q2

Automaton

paths:

• Solve an optimization problem for each
automaton path.(at each stage)

• Progress constraint: Distance to a satisfying
automaton state eventually decreases.

Refined dual automaton

E. Aydin Gol, M. Lazar, C. Belta, Automatica 2015

N = 2
total cost = 29.688

N = 4
total cost = 0.886

N = 6
total cost = 5.12

Reference trajectory
violates the specificationReference trajectory

Controlled trajectory

“Visit region A or region B before
reaching the target while always
avoiding the obstacles”

Optimal TL control for discrete-time linear systems

Example

E. Aydin Gol, M. Lazar, C. Belta, Automatica 2015

Summary
- Existing automata game algorithms can be adapted to produce control

strategies for finite nondeterministic systems from LTL
specifications

- Such strategies for finite systems can be directly used for to
produce conservative control strategies

- Non-conservative bisimulation-type algorithms can be used for
verification and control of discrete-time linear systems

- Lyapunov functions can help with the construction of finite
abstractions

Jana Tumova
(now at KTH)

Boyan Yordanov
(now at Microsoft
Research)

Gregory Batt
(now at INRIA)

Ebru Aydin Gol
(now at Google)

Dennis Ding
(now at UTRC)

Alphan Ulusoy
(now at
Mathworks)

Marius Kloetzer
(now at UT Iasi)

