

Being SMART The Role of Timely Analytics

Krithi Ramamritham IIT Bombay

Center for Urban Sc. & Engg. Smart Energy Informatics Lab

Reduce

- -Consumption
- -Peaks
- -Reliance on unsustainable energy sources

Reduce

- -Consumption
- -Peaks
- -Reliance on unsustainable energy sources

Reuse resources

Reduce

- -Consumption
- -Peaks
- -Reliance on unsustainable energy sources

ReuseresourcesRecycleresources

The 3 R's

Reduce

- -Consumption
- -Peaks
- -Reliance on unsustainable energy sources

ReuseresourcesRecycleresources

The 3 R's

Be SMART

Reduce

- -Consumption
- -Peaks
- -Reliance on unsustainable energy sources

ReuseresourcesRecycleresources

Being Smart

clever, bright, intelligent, able, shrewd, astute, perceptive, savvy

brisk, energetic, vigorous

fast, rapid, swift, lively

sharp-witted, quick-witted quick on the uptake

SMART Energy

Smart buildings Smart campuses Smart grids Smart cities

Smart buildings Smart campuses Smart grids Smart cities

Spotlight: Smart Classroom

The Smart Classroom Complex

Spotlight: Smart Classroom

The Smart Classroom Complex

Energy Consumed ONLYIF Occupied

Sense Temperature & Humidity

AnalyzeTemperature & Humidity > Threshold of Fan

Respond Turn ON Fans

Sense	Temperature
Analyze	Temperature > Upper Threshold of AC
Respond	Turn ON AC

SenseTemperature & HumidityAnalyzeTemperature > Upper Threshold of AC
Temperature & Humidity < Threshold of Fan</th>RespondTurn OFF Fans

Zero Occupancy Zero Consumption

Energy savings

Energy savings

Smart Classroom System

Energy Saavings from different Variations of Smart Classroom Complex

■ Lights & Fans ■ HVAC

Room Scheduling to Reduce Consumption

Old Schedule

Slot	SIC-205	SIC-305	SIC-201	SIC-301
1				
2	HS 490 (12)		CS 681 (38)	CS 435 (68)
3			CS 735 (53)	CS 718 (38)
4		CS 632 (10)	CS 743 (31)	
5				
6				
7	CS 735 (14)		CS 736 (36)	CS 741 (54)
8				
9				CS 775 (20)

New Schedule

Slot	SIC-205	SIC-305	SIC-201	SIC-301
1				
2	HS 490 (12)	CS 681 (38)		CS 435 (68)
3	CS 718 (38)			CS 735 (53)
4	CS 743 (31)	CS 632 (10)		
5				
6				
7	CS 735 (14)	CS 736 (36)		CS 741 (54)
8				
9		CS 775 (20)		

SIC 201 and sic 301 are large classrooms

Deploying Sensors: What to sense? How to sense?

Observability:

A Principled Approach to Deploying Sensors

Is space occupied?

PIR sensors

Camera sensors

Blind spots

False positives/negatives

Sensing Occupancy (Ranking)

Alternative s	Correctness	Prompt- ness	Data	Resilience to Network Problems	Cost Efficiency
PIR	5	2	1	1	1
PIR Array	4	3	2	3	2
Camera	3	1	5	5	3
Camera + PIR	2	5	4	4	4
Camera + PIR Array	1	4	3	3	5

Sensing Occupancy (Properties)

Alternatives	False Positive	False Negative	Network Usage	Zonal Occupancy
PIR	High	High	None	No
PIR Array	High	Low	None	Yes
Camera	Medium	Medium	High	No
Camera	Low	Low	High	No
+ PIR				
Camera + PIR Array	Low	Low	Low	Yes

Factors affecting the choice of sensors

- Choosing a combination of sensors:
- based on
 - what is already available
 - accuracy, maintainability, granularity, granularity, reliability
- If the accuracy from current sources does not meet accuracy needs do we need a dedicated physical sensor?
- If the inference requires more than one input,
 - for example occupancy and temperature,
 - will reliability be affected?

#Occupants

Spotlight SMART Door

Goal: Be counted, while walking in/out at normal pace

Sense	Entry/Exit
Analyze	Hand or Torso?
	 Intra Laser Threshold
Response	Update Occupancy Count

Entering/Leaving?

Who is in the room?

CLASSIFICATION USING DIFFERENT FEATURES

FEATURES USED

Random Forest

SVM

- From *height + weight* based (*hard sensor*)
- information
- IDENTIFY the set of possible occupants given occupants list
- -- {A,B,C}

- From *height + weight* based (*hard sensor*)
- information
- IDENTIFY the set of possible occupants given occupants list

-- {A,B,C}

PRUNE set using *soft sensors*

- From *height + weight* based (*hard sensor*)
- information
- IDENTIFY the set of possible occupants given occupants list

-- {A,B,C}

PRUNE set using *soft sensors*

(people's/rooms' schedules/occupancy, etc.)

- From *height + weight* based (*hard sensor*)
- information
- IDENTIFY the set of possible occupants given occupants list

-- {A,B,C}

PRUNE set using *soft sensors*

(people's/rooms' schedules/occupancy, etc.)

-- C is in a class

- From *height + weight* based (*hard sensor*)
- information
- IDENTIFY the set of possible occupants given occupants list

-- {A,B,C}

PRUNE set using *soft sensors*

(people's/rooms' schedules/occupancy, etc.)

- -- C is in a class
- -- B usually comes after lunch

- From *height + weight* based (*hard sensor*)
- information
- IDENTIFY the set of possible occupants given occupants list

-- {A,B,C}

PRUNE set using *soft sensors*

(people's/rooms' schedules/occupancy, etc.)

- -- C is in a class
- -- B usually comes after lunch

=> A is entering

Information can be sensed/inferred

Types of Analysis

Inference Engines for predicting power consumption

Requesting people in the back rows to move to the front

Requesting people in the back rows to move to the front

During this talk we will save

Requesting people in the back rows to move to the front

During this talk we will save

30% energy

Requesting people in the back rows to move to the front

During this talk we will save

30% energy

\$60

Requesting people in the back rows to move to the front

During this talk we will save

30% energy

\$60

2.5 trees

What does the system do?

What does the system do?

- Is renewable energy available?
- What is the power price structure?

Thermostatically Controlled Electrical Devices

Spotlight SMART HVAC

> Exhibit Periodic ON-OFF Operation

Air-Conditioners

Refrigerators

Room-heaters

Maintain Temp within [L, H]

Behavior of a Cooling Unit

Run Time

Feedback

Have to learn from the past

Smart Scheduling: Peak Demand Reduction

Time

Thermal Comfort Band Maintenance Algorithm

Peak energy constraint: At most *m* out of *n* devices can be on

Thermal Comfort Band Maintenance Algorithm

Peak energy constraint: At most *m* out of *n* devices can be on

Feasibility Analysis

Can the given band [L, H] to be maintained by running at most '*m*' ACs at a time -- using the characteristics of each of the ACs.

$$m \times abs(S_f) \ge (n-m) \times S_r \frown$$

$$S_f = \min(S_f^i \mid i = 1, 2 \cdots n)$$

$$S_r = \max(S_r^i \mid i = 1, 2 \cdots n) \text{ at } T_i = B^U$$

Analysis: Is Aggregate cooling greater than aggregate warming

 S_f - slope of cooling curve

 S_r - slope of warming curve

Demand-Response Management

Comfort band	m	Feasible?			
23-25	3	Yes	Improved Schedulability		
23-25	2	No	by shifting comfort-band		
24-26	2	Yes	(5 ACs)		

		Ambient 27 [°] C			Ambient 30 ⁰ C		
Comfort- band	m	Σ Sf	Σ Sr	Feasibility	Σ Sf	Σ Sr	Feasibility
23 - 25	2	0.149	0.140	Yes	0.35	0.53	No
24 - 26	2	0.218	0.098	Yes	0.46	0.35	Yes

Reinitialization Time

Smartness at all "TIMES"

Towards Sustainable Energy

Reduce need for unsustainable energy sources

- Reduce unnecessary consumption
- Flatten peaks in consumption

Increase reliance on sustainable energy sources

- Exploit renewables
- Store excess energy

Towards Sustainable Energy

Reduce need for unsustainable energy sources

- Reduce unnecessary consumption
- Flatten peaks in consumption

Increase reliance on sustainable energy sources

- Exploit renewables
- Store excess energy

Using Stored/Renewable Energy

 batteries in home settings: peak flattening, reduced costs, smoothed intermittent sources, surviving grid outages

Using Stored/Renewable Energy

 batteries in home settings: peak flattening, reduced costs, smoothed intermittent sources, surviving grid outages

less capacity is required to meet peak demand smaller range of energy supply is needed

higher minimum demand allows more plants to operate at maximum efficiency

Using Stored/Renewable Energy

 batteries in home settings: peak flattening, reduced costs, smoothed intermittent sources, surviving grid outages

higher minimum demand allows more plants to operate at maximum efficiency

Towards Sustainable Energy

Reduce need for unsustainable energy sources

- Reduce unnecessary consumption
- Flatten peaks

Increase reliance on sustainable energy sources

- Exploit renewables
- Store excess energy during off-peak avoid blackouts

<u>Use energy efficient</u> <u>appliances</u>

Turn off devices when not needed

<u>Set comfort levels</u> <u>smartly</u>

Exploit elasticity of appliance operations

Store excess energy

Our Work In Perspective

1.	Locating and Sizing Smart Meter Deployment in Buildings
2.	Smart Meter Data Analysis System
3.	Increasing Predictability and Minimizing Power Consumption
4.	Demand Forecasting using Occupancy Patterns
5.	Thermal Comfort-Band Maintenance and Adaptive Demand-Response Control
6.	Brownout Energy Distribution: Graceful Degradation of QoS in Smart Grids
7.	Energy Cost Minimization with SmartStore under Demand Based Static Pricing Schemes
8.	Solar Intensity Prediction
9.	Scaling up the capability of Smart Grids: Distributed Stream Computing
10.	Robust Strategies for PMU Placement

Smart buildings Smart campuses Smart grids Smart cities

Grid monitoring: PMU placement, data distribution, event detection, state estimation

Grid monitoring: PMU placement, data distribution, event detection, state estimation

Prediction, modeling: intermittent, renewable source prediction, consumption models

Grid monitoring: PMU placement, data distribution, event detection, state estimation

Prediction, modeling: intermittent, renewable source prediction, consumption models

Energy Storage: battery use for peak smoothing, intermittent source buffering

Grid monitoring: PMU placement, data distribution, event detection, state estimation

Prediction, modeling: intermittent, renewable source prediction, consumption models

Energy Storage: battery use for peak smoothing, intermittent source buffering

Demand-side energy management: deferring elastic loads, coordinating background loads

Grid monitoring: PMU placement, data distribution, event detection, state estimation

Prediction, modeling: intermittent, renewable source prediction, consumption models

Some Closing Thoughts...

Any time we answer a question or make a decision, our response reflects our smartness

Smartness at all stages

--Design Time, Deployment Time, Initialization Time, Run Time

-- it is continuous feedback-driven, resource and time constrained

There is always a smarter way of doing something...

- => Today's smarter than yesterday's
- => Tomorrow's will be smarter than today's

Thorny questions -- Intrusion, privacy, security

Cost-effectiveness, payback period

- High Tech should be used to achieve Low Cost
- All Science and Engineering disciplines have a major role

Different topics in CS/EE contributing to smart things

- **AI** reasoning, analytics, machine learning, data fusion, forecasting, planning, reinforcement learning
- Communication and networking, distributed systems -- light weight protocols, timely data delivery
- Embedded systems -- low energy / footprint devices, sensors
- Autonomic computing
- Algorithms -- optimization, data analysis, state estimation
- Software engineering -- v & v, embedded sw
- **Databases** -- storage, storage and retrieval query processing/optimization, stream processing
- **Operating systems** caching prefetching, scheduling

Thanks a lot

Thanks to my collaborators