Insights into Large Complex Systems via Random Matrix Theory

Lu Wei

SEAS, Harvard

06/23/2016 @ UTC Institute for Advanced Systems Engineering University of Connecticut

- milestones
 - Wishart distribution (Wishart [1928])

- milestones
 - Wishart distribution (Wishart [1928])
 - Semicircle law (Wigner [1955])

- milestones
 - Wishart distribution (Wishart [1928])
 - Semicircle law (Wigner [1955])
 - Marchenko-Pastur law (Marchenko-Pastur [1967])

- milestones
 - Wishart distribution (Wishart [1928])
 - Semicircle law (Wigner [1955])
 - Marchenko-Pastur law (Marchenko-Pastur [1967])
 - Tracy-Widom law (Tracy-Widom [1990s])

- Wishart distribution (Wishart [1928])
- Semicircle law (Wigner [1955])
- Marchenko-Pastur law (Marchenko-Pastur [1967])
- Tracy-Widom law (Tracy-Widom [1990s])
- KPZ universality class (Johansson [2000s])

- Wishart distribution (Wishart [1928])
- Semicircle law (Wigner [1955])
- Marchenko-Pastur law (Marchenko-Pastur [1967])
- Tracy-Widom law (Tracy-Widom [1990s])
- KPZ universality class (Johansson [2000s])
- tools from almost all branches of mathematics and physics

- Wishart distribution (Wishart [1928])
- Semicircle law (Wigner [1955])
- Marchenko-Pastur law (Marchenko-Pastur [1967])
- Tracy-Widom law (Tracy-Widom [1990s])
- KPZ universality class (Johansson [2000s])
- tools from almost all branches of mathematics and physics
 - Akemann et al. (eds) [2011] The Oxford Handbook of Random Matrix Theory. *Oxford University Press*

- Wishart distribution (Wishart [1928])
- Semicircle law (Wigner [1955])
- Marchenko-Pastur law (Marchenko-Pastur [1967])
- Tracy-Widom law (Tracy-Widom [1990s])
- KPZ universality class (Johansson [2000s])
- tools from almost all branches of mathematics and physics
 - Akemann et al. (eds) [2011] The Oxford Handbook of Random Matrix Theory. *Oxford University Press*
- **applications**: biology, data sciences, economics, information theory, machine learning, wireless communications,...

joint works with Akemann, Hero, Kieburg, Liu, Tarokh, Zhang, Zheng

• Crisanti et al. [1993] Products of Random Matrices in Statistical Physics. *Springer*

- Crisanti et al. [1993] Products of Random Matrices in Statistical Physics. *Springer*
- Müller [2002] On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels, *IEEE Trans. Inf. Theory*

- Crisanti et al. [1993] Products of Random Matrices in Statistical Physics. *Springer*
- Müller [2002] On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels, *IEEE Trans. Inf. Theory*

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}$, where $\mathbf{H} = \mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1$

- Crisanti et al. [1993] Products of Random Matrices in Statistical Physics. *Springer*
- Müller [2002] On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels, IEEE Trans. Inf. Theory

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}$, where $\mathbf{H} = \mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1$

- Crisanti et al. [1993] Products of Random Matrices in Statistical Physics. *Springer*
- Müller [2002] On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels, IEEE Trans. Inf. Theory

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}$, where $\mathbf{H} = \mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1$

an earlier attempt via eigenvalues and singular values relation*

^{*}W., Zheng, Tirkkonen, Hämäläinen [2013] On the ergodic mutual information of multiple cluster scattering MIMO channels, *IEEE Commun. Lett.*

 $\mathbf{H} = \mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1$

 $\mathbf{H} = \mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1$

• *n* = 1 – Wishart-Laguerre ensemble Bronk [1965]

 $\mathbf{H} = \mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1$

• n = 1 – Wishart-Laguerre ensemble Bronk [1965] $p(\lambda_1, \dots, \lambda_m) \propto \det^2(\lambda_k^{j-1}) \prod_{i=1}^m e^{-\lambda_i}$

$$\mathbf{H}=\mathbf{H}_n\cdots\mathbf{H}_2\mathbf{H}_1$$

• n = 1 – Wishart-Laguerre ensemble Bronk [1965] $p(\lambda_1, \dots, \lambda_m) \propto \det^2 \left(\lambda_k^{j-1} \right) \prod_{i=1}^m e^{-\lambda_i}$

• *n* arbitrary[†]

[†] Akemann, Kieburg, W. [2013] Singular value correlation functions for products of Wishart random matrices, J. Phys. A

$$\mathbf{H}=\mathbf{H}_n\cdots\mathbf{H}_2\mathbf{H}_1$$

•
$$n = 1$$
 – Wishart-Laguerre ensemble Bronk [1965]
 $p(\lambda_1, \dots, \lambda_m) \propto \det^2 \left(\lambda_k^{j-1}\right) \prod_{i=1}^m e^{-\lambda_i}$

• *n* arbitrary[†]

$$p(\lambda_1,\ldots,\lambda_m) \propto \det\left(\lambda_k^{j-1}
ight) \det\left(f_j(\lambda_k)
ight)$$

[†] Akemann, Kieburg, W. [2013] Singular value correlation functions for products of Wishart random matrices, J. Phys. A

$$\mathbf{H}=\mathbf{H}_n\cdots\mathbf{H}_2\mathbf{H}_1$$

•
$$n = 1$$
 – Wishart-Laguerre ensemble Bronk [1965]
 $p(\lambda_1, \dots, \lambda_m) \propto \det^2 \left(\lambda_k^{j-1}\right) \prod_{i=1}^m e^{-\lambda_i}$

• *n* arbitrary[†]

$$p(\lambda_1, \dots, \lambda_m) \propto \det\left(\lambda_k^{j-1}\right) \det\left(f_j(\lambda_k)\right)$$
$$f_j(x) = G_{0,m}^{m,0} \left(x \begin{vmatrix} - \\ 0, \dots, 0, j-1 \end{vmatrix} \right) = \frac{1}{2\pi \imath} \oint_{\mathcal{L}} \mathrm{d} u \, x^{-u} \Gamma^{m-1}(u) \Gamma(u+j-1)$$

[†] Akemann, Kieburg, W. [2013] Singular value correlation functions for products of Wishart random matrices, J. Phys. A

• ergodic capacity Akemann-Kieburg-W. [2013]

$$\mathbb{E}\left[\sum_{i=1}^m \log\left(1+\gamma\lambda_i\right)\right]$$

• ergodic capacity Akemann-Kieburg-W. [2013]

$$\mathbb{E}\left[\sum_{i=1}^m \log\left(1 + \gamma \lambda_i\right)\right]$$

• outage capacity of orthogonal space-time codes[‡], i.e., distribution of

[‡]W., Zheng, Corander, Taricco [2015] On the outage capacity of orthogonal space-time block codes over multi-cluster scattering MIMO channels, *IEEE Trans. Commun.*

• ergodic capacity Akemann-Kieburg-W. [2013]

$$\mathbb{E}\left[\sum_{i=1}^{m}\log\left(1+\gamma\lambda_{i}\right)\right]$$

outage capacity of orthogonal space-time codes[‡], i.e., distribution of

• outage capacity of double-cluster channels§, i.e., distribution of

$$\sum_{i=1}^{m} \log \left(1 + \gamma \lambda_i
ight)$$
 for $n = 2$

[‡]W., Zheng, Corander, Taricco [2015] On the outage capacity of orthogonal space-time block codes over multi-cluster scattering MIMO channels, *IEEE Trans. Commun.*

[§]Zheng, W., Speicher, Müller, Hämäläinen, Corander On the fluctuation of mutual information of double-cluster scattering MIMO channels: A free probability approach, IEEE Trans. Inf. Theory, under revision, arXiv:1502.05516

 $\mathbf{H} = \Sigma^{1/2} \mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1$

• natural generalization $\mathbb{E}\left[\mathbf{H}\mathbf{H}^{\dagger}\right] \propto \Sigma = \text{diag}\left(\sigma_{1}, \ldots, \sigma_{m}\right) - \text{spikes}$

- natural generalization $\mathbb{E} \left[\mathbf{H} \mathbf{H}^{\dagger} \right] \propto \Sigma = \text{diag} \left(\sigma_1, \dots, \sigma_m \right) \text{spikes}$
- n = 1 Baik-Ben Arous-Péché [2005] Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab.

- natural generalization $\mathbb{E}\left[\mathbf{HH}^{\dagger}\right] \propto \Sigma = \text{diag}\left(\sigma_{1}, \ldots, \sigma_{m}\right) \text{spikes}$
- n = 1 Baik-Ben Arous-Péché [2005] Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab.
 - λ_1 from Tracy-Widom to Gaussian (BBP phase transition)

- natural generalization $\mathbb{E}\left[\mathbf{HH}^{\dagger}\right] \propto \Sigma = \text{diag}\left(\sigma_{1}, \ldots, \sigma_{m}\right) \text{spikes}$
- n = 1 Baik-Ben Arous-Péché [2005] Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab.
 - λ_1 from Tracy-Widom to Gaussian (BBP phase transition)
 - critical value $\sigma_{\rm crit} = 2$

- natural generalization $\mathbb{E}\left[\mathbf{HH}^{\dagger}\right] \propto \Sigma = \text{diag}\left(\sigma_{1}, \ldots, \sigma_{m}\right) \text{spikes}$
- n = 1 Baik-Ben Arous-Péché [2005] Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab.
 - λ_1 from Tracy-Widom to Gaussian (BBP phase transition)
 - critical value $\sigma_{\rm crit} = 2$
- *n* arbitrary[¶]

[¶]Liu, W., Zhang Singular values for spiked products of complex Ginibre matrices

- natural generalization $\mathbb{E}\left[\mathbf{HH}^{\dagger}\right] \propto \Sigma = \text{diag}\left(\sigma_{1}, \ldots, \sigma_{m}\right) \text{spikes}$
- n = 1 Baik-Ben Arous-Péché [2005] Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab.
 - λ_1 from Tracy-Widom to Gaussian (BBP phase transition)
 - critical value $\sigma_{\rm crit} = 2$
- *n* arbitrary[¶]
 - λ_1 BBP phase transition

[¶]Liu, W., Zhang Singular values for spiked products of complex Ginibre matrices
Spiked Products of Random Matrices: Phase Transitions

 $\mathbf{H} = \Sigma^{1/2} \mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1$

- natural generalization $\mathbb{E}\left[\mathbf{HH}^{\dagger}\right] \propto \Sigma = \text{diag}\left(\sigma_{1}, \ldots, \sigma_{m}\right) \text{spikes}$
- n = 1 Baik-Ben Arous-Péché [2005] Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab.
 - λ_1 from Tracy-Widom to Gaussian (BBP phase transition)
 - critical value $\sigma_{\rm crit} = 2$
- *n* arbitrary[¶]
 - λ_1 BBP phase transition
 - critical value $\sigma_{crit} = n + 1$

[¶]Liu, W., Zhang Singular values for spiked products of complex Ginibre matrices

Phase Transitions

Phase Transitions

• MIMO radar detection ";

W., Zheng, Hero, Tarokh Scaling laws and phase transitions for target detection in MIMO radar, ITW'16

Phase Transitions

• MIMO radar detection^{||}; community detection,...

W., Zheng, Hero, Tarokh Scaling laws and phase transitions for target detection in MIMO radar, ITW'16

Applications to Other Large Complex Systems

Signal Processing

joint works with Dharmawansa, Liang, McKay, Tirkkonen

 cognitive radio - a solution to spectrum underutilization problem by dynamic spectrum access

- cognitive radio a solution to spectrum underutilization problem by dynamic spectrum access
 - unlicensed users are allowed to opportunistically use the frequency bands that are not heavily occupied by licensed users

- cognitive radio a solution to spectrum underutilization problem by dynamic spectrum access
 - unlicensed users are allowed to opportunistically use the frequency bands that are not heavily occupied by licensed users
- awareness of spectrum usage information via spectrum sensing

- cognitive radio a solution to spectrum underutilization problem by dynamic spectrum access
 - unlicensed users are allowed to opportunistically use the frequency bands that are not heavily occupied by licensed users
- awareness of spectrum usage information via spectrum sensing

$$\mathbf{y}_{m\times 1} = \mathbf{H}_{m\times p} \mathbf{x} + \mathbf{w}$$

- cognitive radio a solution to spectrum underutilization problem by dynamic spectrum access
 - unlicensed users are allowed to opportunistically use the frequency bands that are not heavily occupied by licensed users
- awareness of spectrum usage information via spectrum sensing

$$\mathbf{y}_{m\times 1} = \mathbf{H}_{m\times p} \mathbf{x} + \mathbf{w}$$

$$\begin{split} \mathbf{Y}_{m \times N} &= (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N) \quad \Longrightarrow \quad \begin{cases} \mathcal{H}_0 & : & \text{noise} \\ \mathcal{H}_1 & : & \text{signal} + \text{noise} \end{cases} \end{split}$$

- cognitive radio a solution to spectrum underutilization problem by dynamic spectrum access
 - unlicensed users are allowed to opportunistically use the frequency bands that are not heavily occupied by licensed users
- awareness of spectrum usage information via spectrum sensing

$$\mathbf{y}_{m\times 1} = \mathbf{H}_{m\times p} \mathbf{x} + \mathbf{w}$$

$$egin{aligned} \mathbf{Y} &= (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N) & \Longrightarrow & egin{cases} \mathcal{H}_0 & : & ext{noise} \ \mathcal{H}_1 & : & ext{signal + noise} \end{aligned}$$

• $\textbf{R}=\textbf{Y}\textbf{Y}^{\dagger}$ data sample covariance; E noise sample covariance

p > 1 but unknown*

$$T_{\mathsf{ST}} = rac{\det\left(\mathbf{R}
ight)}{\left(rac{1}{m}\mathrm{tr}(\mathbf{R})
ight)^m}$$

^{*} W., Tirkkonen [2012] Spectrum sensing in the presence of multiple primary users, IEEE Trans. Commun.

• p > 1 but unknown*

$$T_{\mathsf{ST}} = rac{\det\left(\mathbf{R}
ight)}{\left(rac{1}{m}\mathrm{tr}(\mathbf{R})
ight)^m}$$

low signal-to-noise ratio[†]

$$T_{\mathsf{J}} = rac{\mathrm{tr}\left(\mathsf{R}^2
ight)}{\mathrm{tr}^2(\mathsf{R})}$$

^{*} W., Tirkkonen [2012] Spectrum sensing in the presence of multiple primary users, IEEE Trans. Commun.

[†]W., Dharmawansa, Tirkkonen [2013] Multiple primary user spectrum sensing in the low SNR regime, IEEE Trans. Commun.

p > 1 but unknown*

$$T_{\mathsf{ST}} = rac{\det\left(\mathbf{R}
ight)}{\left(rac{1}{m}\mathrm{tr}(\mathbf{R})
ight)^m}$$

low signal-to-noise ratio[†]

$$T_{\rm J} = \frac{{\rm tr}\left(\mathbf{R}^2\right)}{{\rm tr}^2(\mathbf{R})}$$

unknown noise covariance[‡]

$$T_{\mathsf{W}} = rac{\det\left(\mathsf{E}
ight)}{\det\left(\mathsf{R}+\mathsf{E}
ight)}$$

* W., Tirkkonen [2012] Spectrum sensing in the presence of multiple primary users, IEEE Trans. Commun.

[†] W., Dharmawansa, Tirkkonen [2013] Multiple primary user spectrum sensing in the low SNR regime, *IEEE Trans. Commun.*

[‡] W., Tirkkonen, Liang [2014] Multi-source signal detection with arbitrary noise covariance, IEEE Trans. Signal Process.

Lu Wei

13/19

joint works with Corander, Pitaval, Tirkkonen

• fundamental issue: cardinality and minimum distance tradeoff

- fundamental issue: cardinality and minimum distance tradeoff
- a code with cardinality $|\mathcal{C}|, \quad \mathcal{C} = \left\{ \textbf{G}_1, \textbf{G}_2, \dots, \textbf{G}_{|\mathcal{C}|} \right\} \subset \mathcal{G}$

Coding Theory

- fundamental issue: cardinality and minimum distance tradeoff
- a code with cardinality |C|, $C = \left\{ G_1, G_2, \dots, G_{|C|} \right\} \subset G$
- minimum distance, $r = \min \left\{ ||\mathbf{G}_i \mathbf{G}_j|| \mid \mathbf{G}_i, \mathbf{G}_j \in \mathcal{C}, i \neq j \right\}$

Coding Theory

- fundamental issue: cardinality and minimum distance tradeoff
- a code with cardinality $|\mathcal{C}|$, $\mathcal{C} = \left\{ \mathbf{G}_1, \mathbf{G}_2, \dots, \mathbf{G}_{|\mathcal{C}|} \right\} \subset \mathcal{G}$
- minimum distance, $r = \min \left\{ ||\mathbf{G}_i \mathbf{G}_j|| | \mathbf{G}_i, \mathbf{G}_j \in \mathcal{C}, i \neq j \right\}$

Coding Theory

- fundamental issue: cardinality and minimum distance tradeoff
- a code with cardinality $|\mathcal{C}|$, $\mathcal{C} = \left\{ \mathbf{G}_1, \mathbf{G}_2, \dots, \mathbf{G}_{|\mathcal{C}|} \right\} \subset \mathcal{G}$
- minimum distance, $r = \min \left\{ ||\mathbf{G}_i \mathbf{G}_j|| | \mathbf{G}_i, \mathbf{G}_j \in \mathcal{C}, i \neq j \right\}$

• metric ball, $B(r) = \left\{ \mathbf{G} \in \mathcal{G} \mid d\left(\mathbf{G}, \mathbf{G}'\right) \leq r \right\}, \ \mathbf{G}' \in \mathcal{G}$

Coding Theory

- fundamental issue: cardinality and minimum distance tradeoff
- a code with cardinality $|\mathcal{C}|$, $\mathcal{C} = \left\{ \mathbf{G}_1, \mathbf{G}_2, \dots, \mathbf{G}_{|\mathcal{C}|} \right\} \subset \mathcal{G}$
- minimum distance, $r = \min \left\{ ||\mathbf{G}_i \mathbf{G}_j|| | \mathbf{G}_i, \mathbf{G}_j \in \mathcal{C}, i \neq j \right\}$

• metric ball, $B(r) = \left\{ \mathbf{G} \in \mathcal{G} \mid d\left(\mathbf{G}, \mathbf{G}'\right) \le r \right\}, \quad \mathbf{G}' \in \mathcal{G}$ • volume of metric ball, $\mu(B(r)) = \int_{d(\mathbf{G}, \mathbf{G}') \le r} f(\mathcal{G}) \, \mathrm{d}\mathcal{G}$

Volume of Metric Balls

$$\mu\left(\boldsymbol{B}(\boldsymbol{r})\right) \propto \int \cdots \int_{||\mathbf{U}-\mathbf{I}_n||_{\mathsf{F}} \leq \boldsymbol{r}} \prod_{1 \leq j < k \leq n} \left| \mathrm{e}^{\imath \theta_j} - \mathrm{e}^{\imath \theta_k} \right|^2 \prod_{i=1}^n \mathrm{d}\theta_i$$

$$\mu\left(\boldsymbol{B}(\boldsymbol{r})\right) \propto \int \cdots \int_{||\mathbf{U}-\mathbf{I}_n||_{\mathsf{F}} \leq \boldsymbol{r}} \prod_{1 \leq j < k \leq n} \left| \mathrm{e}^{\imath \theta_j} - \mathrm{e}^{\imath \theta_k} \right|^2 \prod_{i=1}^n \mathrm{d}\theta_i$$

• Han-Rosenthal [2006] Unitary space-time constellation analysis: an upper bound for the diversity, *IEEE Trans. Inf. Theory*

$$\mu\left(\boldsymbol{B}(\boldsymbol{r})\right) \propto \int \cdots \int_{||\mathbf{U}-\mathbf{I}_n||_{\mathsf{F}} \leq \boldsymbol{r}} \prod_{1 \leq j < k \leq n} \left| \mathrm{e}^{\imath \theta_j} - \mathrm{e}^{\imath \theta_k} \right|^2 \prod_{i=1}^n \mathrm{d}\theta_i$$

- Han-Rosenthal [2006] Unitary space-time constellation analysis: an upper bound for the diversity, IEEE Trans. Inf. Theory
- limiting behavior* as $n o \infty$

$$\mu\left(B\left(r
ight)
ight)\simeqrac{1}{2} ext{erf}(n)-rac{1}{2} ext{erf}\left(n-rac{r^{2}}{2}
ight)$$

^{*}W., Pitaval, Corander, Tirkkonen From random matrix theory to coding theory: Volume of a metric ball in unitary group, IEEE Trans. Inf. Theory, submitted, arXiv:1506.07259

$$\mu\left(\boldsymbol{B}(\boldsymbol{r})\right) \propto \int \cdots \int_{||\mathbf{U}-\mathbf{I}_n||_{\mathsf{F}} \leq \boldsymbol{r}} \prod_{1 \leq j < k \leq n} \left| \mathrm{e}^{\imath \theta_j} - \mathrm{e}^{\imath \theta_k} \right|^2 \prod_{i=1}^n \mathrm{d}\theta_i$$

- Han-Rosenthal [2006] Unitary space-time constellation analysis: an upper bound for the diversity, *IEEE Trans. Inf. Theory*
- limiting behavior* as $n o \infty$

$$\mu\left(B\left(r
ight)
ight)\simeqrac{1}{2} ext{erf}\left(n
ight)-rac{1}{2} ext{erf}\left(n-rac{r^{2}}{2}
ight)$$

• super-exponential rate of convergence $\mathcal{O}(n^{-cn})$

^{*}W., Pitaval, Corander, Tirkkonen From random matrix theory to coding theory: Volume of a metric ball in unitary group, IEEE Trans. Inf. Theory, submitted, arXiv:1506.07259

$$\mu\left(\boldsymbol{B}(\boldsymbol{r})\right) \propto \int \cdots \int_{||\mathbf{U}-\mathbf{I}_n||_{\mathsf{F}} \leq \boldsymbol{r}} \prod_{1 \leq j < k \leq n} \left| \mathrm{e}^{\imath \theta_j} - \mathrm{e}^{\imath \theta_k} \right|^2 \prod_{i=1}^n \mathrm{d}\theta_i$$

- Han-Rosenthal [2006] Unitary space-time constellation analysis: an upper bound for the diversity, IEEE Trans. Inf. Theory
- limiting behavior* as $n o \infty$

$$\mu\left(B\left(r
ight)
ight)\simeqrac{1}{2} ext{erf}(n)-rac{1}{2} ext{erf}\left(n-rac{r^{2}}{2}
ight)$$

- super-exponential rate of convergence O (n^{-cn})
- CLT of linear statistics of unitary group

^{*}W., Pitaval, Corander, Tirkkonen From random matrix theory to coding theory: Volume of a metric ball in unitary group, IEEE Trans. Inf. Theory, submitted, arXiv:1506.07259

$$\mu\left(B\left(r\right)\right) \propto \int \cdots \int_{\substack{0 \leq x_i \leq 1 \\ \sum_{j=1}^{p} x_i \leq r}} \prod_{1 \leq j < k \leq p} (x_j - x_k)^2 \prod_{i=1}^{p} x_i^{n-p-q} \left(1 - x_i\right)^{q-p} \mathrm{d}x_i$$

$$\mu\left(B\left(r\right)\right) \propto \int \cdots \int_{\substack{0 \leq x_i \leq 1 \\ \sum_{j=1}^{p} x_i \leq r}} \prod_{1 \leq j < k \leq p} (x_j - x_k)^2 \prod_{i=1}^{p} x_i^{n-p-q} \left(1 - x_i\right)^{q-p} \mathrm{d}x_i$$

● Barg-Nogin [2002] fixed *p*, *q*, large *n*; Dai et al. [2008] *r* ≤ 1

$$\mu\left(B\left(r\right)\right) \propto \int \cdots \int_{\substack{0 \leq x_i \leq 1 \\ \sum_{i=1}^{p} x_i \leq r}} \prod_{1 \leq j < k \leq p} (x_j - x_k)^2 \prod_{i=1}^{p} x_i^{n-p-q} (1 - x_i)^{q-p} \mathrm{d}x_i$$

- Barg-Nogin [2002] fixed *p*, *q*, large *n*; Dai et al. [2008] *r* ≤ 1
- limiting behavior[†] as $n, p, q \rightarrow \infty$

$$\mu\left(B\left(r
ight)
ight)\simeqrac{1}{2} ext{erf}\left(rac{b}{\sqrt{2a}}
ight)-rac{1}{2} ext{erf}\left(rac{b-r^{2}}{\sqrt{2a}}
ight)$$

[†] Pitaval, W., Tirkkonen, Corander Volume of metric balls in high-dimensional complex Grassmann manifolds, *IEEE Trans. Inf. Theory*, submitted, arXiv:1508.00256

$$\mu\left(B\left(r\right)\right) \propto \int \cdots \int_{\substack{0 \leq x_i \leq 1 \\ \sum_{i=1}^{p} x_i \leq r}} \prod_{1 \leq j < k \leq p} (x_j - x_k)^2 \prod_{i=1}^{p} x_i^{n-p-q} (1 - x_i)^{q-p} dx_i$$

- Barg-Nogin [2002] fixed *p*, *q*, large *n*; Dai et al. [2008] *r* ≤ 1
- limiting behavior[†] as $n, p, q \rightarrow \infty$

$$\mu\left(B\left(r
ight)
ight)\simeqrac{1}{2} ext{erf}\left(rac{b}{\sqrt{2a}}
ight)-rac{1}{2} ext{erf}\left(rac{b-r^{2}}{\sqrt{2a}}
ight)$$

CLT of linear statistics of Jacobi ensemble

[†] Pitaval, W., Tirkkonen, Corander Volume of metric balls in high-dimensional complex Grassmann manifolds, *IEEE Trans. Inf. Theory*, submitted, arXiv:1508.00256

$$\mu\left(B\left(r\right)\right) \propto \int \cdots \int_{\substack{0 \leq x_i \leq 1 \\ \sum_{i=1}^{p} x_i \leq r}} \prod_{1 \leq j < k \leq p} (x_j - x_k)^2 \prod_{i=1}^{p} x_i^{n-p-q} (1 - x_i)^{q-p} dx_i$$

- Barg-Nogin [2002] fixed *p*, *q*, large *n*; Dai et al. [2008] *r* ≤ 1
- limiting behavior[†] as $n, p, q \rightarrow \infty$

$$\mu\left(B\left(r
ight)
ight)\simeqrac{1}{2} ext{erf}\left(rac{b}{\sqrt{2a}}
ight)-rac{1}{2} ext{erf}\left(rac{b-r^{2}}{\sqrt{2a}}
ight)$$

CLT of linear statistics of Jacobi ensemble
 moments from Painlevé V

[†] Pitaval, W., Tirkkonen, Corander Volume of metric balls in high-dimensional complex Grassmann manifolds, *IEEE Trans. Inf. Theory*, submitted, arXiv:1508.00256

Large Complex Systems

Signal Processing

Random Matrix Theory

Information Theory

Statistical Physics

Data Sciences

Machine Learning