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Introduction and Motivation

• CA is home to the most productive agricultural region in the US

• Most recent crop report: $54B in revenue generated

• 99% of the nation’s supply and 50% of the world’s supply of raisins 
come from Fresno county

• 79% of human-used water goes to agriculture
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Introduction and Motivation
California’s Unprecedented Drought

June 2014 June 2015 June 2016
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Introduction and Motivation
Salt Imbalance
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Introduction and Motivation
Salt Imbalance

• Natural processes and agricultural irrigation operations 
accumulate salts in the region

• 275tons/hr (2001 report rate1)

• includes materials classified hazardous 

• Unique soil conditions make groundwater shallow

• Water applied to the soil saturates crop root zones, dissolving salts, 
and become toxic to crops 

• By 2030, 15% of arable land will need to be retired, 40% on 
the west side of the San Joaquin Valley2
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1. CA DWR, Water Facts: Salt Balance in the San Joaquin Valley, No. 20, 2001
2. R. Howitt, J. Kaplan, D. Larson, D. MacEwan, J. Medellín-Azuara, G. Horner, et al., The Economic Impacts 

of Central Valley Salinity, Tech. rep., University of California Davis, 2009



Introduction and Motivation
Summary

• Limited and unreliable water supply

• Climate change driven drought, economic and population growth

• Irrigation causes salt accumulation in soil

• Impairs soil, environmentally hazardous, reduces productivity

• Soil salinity control produces extraordinary quantities of saltwater
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Introduction and Motivation
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Introduction and Motivation
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Process Design and Modeling a Solution
Objective

• Primary Objective: Treat the saline wastewater to very high 
recovery, sequester the salts, and return freshwater

• Increase the overall water-use efficiency of the sector

• Reduce and eventually eliminate salt accumulation problem (and its effects)

• Increase the production efficiency of the land through sustainable drainage 
management
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Process Design and Modeling a Solution
Design Criteria and Constraints

• Flexibility: varying feed quality/chemistry

• Robust: high salinity, scaling, crystallization, corrosion

• Reduced dependence on fossil fuels and grid power, reduced 
emissions

• Near-zero to zero liquid discharge, solids recovery
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Process Design and Modeling a Solution

• Basis for design: multi-effect distillation
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Process Design and Modeling a Solution

• Basis for design: multi-effect distillation
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Single greatest source of 
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Process Design and Modeling a Solution
Waste-Heat Recovery
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Process Design and Modeling a Solution
Waste-Heat Recovery
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• 10-effect MED
• Heat integration with inter-stage preheating and vapor absorption



Process Design and Modeling a Solution
Concentrated Solar
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• Single-axis tracking large-aperture parabolic trough
• Vacuum tube receiver
• N-S orientation

• Solar resource data input from the NREL database
• Specific coordinates
• 8760h/year format



Process Design and Modeling a Solution
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Process Design and Modeling a Solution
Large-Scale Deployment
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Mathematical Problem Formulation
Model Considerations and Assumptions

• Without a solution, retire 10% growing region by 2035 due to salt 
impairment

• Continue irrigation and operate agribusiness

• Desalination for drainage reuse

• Prevent growing region retirement (salt impairment)

• Reduce water footprint of agriculture

• Generate a new income source for growers (M&I sales)

• Increase water for municipal use

19Stuber, M D, Optimal design of fossil-solar hybrid thermal desalination for saline agricultural drainage water reuse. 
Renewable Energy, 89, pp 552-563, 2016.



Mathematical Problem Formulation
Model Considerations and Assumptions

• Desalinate all available drainage water: 22,500 acre-ft/yr (27.75M m3/yr)

• Fixed inflation on food/ag revenues and energy prices

• Debt financing, 10y amortization, 20y project

• Optimal design of solar field and storage for natural gas offset

• Water sales at market rates (parameter)

• Uncertainty in natural gas pricing (parameter)

20Stuber, M D, Optimal design of fossil-solar hybrid thermal desalination for saline agricultural drainage water reuse. 
Renewable Energy, 89, pp 552-563, 2016.



Mathematical Problem Formulation
Robust Optimization and Worst-Case Feasibility

• Logical constraint:
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Mathematical Problem Formulation
Robust Optimization and Worst-Case Feasibility

• Parametric Optimization
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Mathematical Problem Formulation
Robust Optimization and Worst-Case Feasibility

• Simple Example:
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Mathematical Problem Formulation
Robust Optimization and Worst-Case Feasibility

• Simple Example:
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Mathematical Problem Formulation
Robust Optimization and Worst-Case Feasibility

• Simple Example:
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Mathematical Problem Formulation
Robust Optimization and Worst-Case Feasibility

• Simple Example:
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Mathematical Problem Formulation
Robust Optimization and Worst-Case Feasibility

• Parametric Optimization
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Mathematical Problem Formulation
Robust Optimization and Worst-Case Feasibility

• Min-Max formulation
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Mathematical Problem Formulation
Robust Optimization and Worst-Case Feasibility

• Semi-infinite programs:
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Mathematical Problem Formulation
Robust Optimization and Worst-Case Feasibility

• Semi-infinite program reformulation
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Solution Results and Discussion
Parametric Optimal Design Performance
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Solution Results and Discussion
Parametric Optimal Design Economics
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Solution Results and Discussion
Worst-Case Feasibility

• Solving the semi-infinite program yielded a feasible design: 
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Solution Results and Discussion
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Conclusion

• The worst-case economics support investment in solar desalination 
for a sustainable agribusiness

• On its own, desalinated water is considered “too expensive” by 
farmers

• Systems-view solution and optimal design methodology make it profitable

• Results provide further support for capital investment vs. uncertain 
futures (e.g., pay now for renewables or risk energy market volatility)
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Thank YOU!
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Any Questions?
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Process Design and Modeling a Solution
Solar Thermal Energy Storage
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• Single-tank packed-bed thermal storage
• Spherical concrete packing
• 12” tank insulation
• Reverse-flow charging/discharging


