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Simulations	to	Proofs	through	Discrepancy.

for	cyber-physical	systems
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Cyberphysical systems



Cars	recalled	in	2013:	22	M	

Medical	devices	recalled	over	the	decade:	2	M

%	owing	to	software	bugs:	24	 .

%	cost	of	787	attributed	to	software:	50

Number	of	fatal	“autonomous”	crashes:	1



“How	can	we	design	cyber-physical	
systems	that	we	can	bet	our	lives	on?”
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- Jeannette	M.	Wing
VP	of Microsoft	Research

Professor	of	Computer	Science,	CMU



Rigorous	system	engineering	&	
Correctness	properties
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Invariance

Nothing	“bad”	ever	happens

Safe	separation	between	
vehicles	is	maintained	in	
adaptive	cruise	control

Privacy

No	information	leakage

Location	privacy	is	preserved	
in	a	crowd-sourced	smart	

navigation	system

sensitivity	
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Trajectory (or	execution):	evolution	of	states	over	time	A	
model	can	be	viewed	as	a	mapping	from	a	parameter	𝑑 to	a	
trajectory	𝜉# .	E.g., 𝑑 could	be	initial	state,	private	data,	etc.	

Sensitivity	bounds	the	distance	between	trajectories	as	a	
function	of	the	changes	in	parameters,	that	is	 𝜉# − 𝜉#%

Quantifying	sensitivity	

�̇� = 𝑓(𝑥)

𝜃
𝜉-

𝜃. 𝜉-%

𝑂 = 𝑎𝑏…
𝜉3,5 = 𝑞7𝑞8… 𝑞9
𝜉3.,5 = 𝑞7𝑞′8 …𝑞9′

𝑎 𝑏



Talk	outline
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Invariance

Nothing	“bad”	ever	happens

o From	Simulations	to	Proofs
o Tool	and	applications
o Compositional	analysis

Privacy

conclusion	
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∃	𝑥7 ∈ 𝐼𝑛𝑖𝑡, 𝑢 ∈ 𝑈, 𝑎 ∈ 𝐴, 𝑡 ∈ [0, 𝑇],	
such	that	trajectory	𝜉 𝑥7, 𝑎, 𝑢, 𝑡 ∈ 𝑈 ?

Yes	(Bug-trace)	/	No	(Safety	certificate)	

Certificate

Model,	
adversary,	

requirements
Bug	trace	

Algorithm

Verification	problem
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Plant

Software

SensorActuator

Hybrid	automata:	A		model	for	cyberphysical systems

�̇� = 𝑓8 𝑥, 𝑡
𝐼𝑛𝑣8

�̇� = 𝑓J 𝑥, 𝑡
𝐼𝑛𝑣J

𝐺8J(𝑥)

𝑅8J(𝑥, 𝑥′)



Early	90’s:	Exactly	compute	unbounded	time	reach	set
Decidable	for	timed	automata	[Alur Dill	92]	
Undecidable	even	for	rectangular	dynamics	[Henzinger 95]

Late	90’-00’: Approximate	bounded	time	reach	set	
Hamilton-Jacobi-Bellman	approach	[Tomlin	et	al.	02]	
Polytopes	[Henzinger 97],	ellipsoids	[Kurzhanski]		zonotopes
[Girard	05],	support	functions	[Frehse 08]
Predicate	abstraction	[Alur 03],	CEGAR	[Clarke	03]	[Mitra	13]

Today: Scalability	for	realistic	models
Simulation-driven	algorithms	[Julius	02] [Mitra	10-13][Donze 07]
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Brief	history	
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o Given	start														and	target
o Compute	finite	cover	of	initial	set
o Simulate	from	the	center	𝑥7 of	each	cover	
o Bloat/generalize simulation	to	contain	all

trajectories	from	the	cover
o Check	intersection/containment	with	𝑈
o Refine	if	needed	and	repeat

How	to	bloat	or	generalize	simulations?
How	to	handle	mode	switches?

S 𝑈

Simulations	to	proofs



Definition.	𝛽:ℝJ9×ℝQ7 →ℝQ7		defines	a	discrepancy	of	the	
system	if	for	any	two	states	𝑥8 and	𝑥J ∈ 𝑋,	For	any	t,	
o |𝜉 𝑥8, 𝑡 − 𝜉 𝑥J, 𝑡 | ≤ 𝛽 𝑥8, 𝑥J, 𝑡 and	
o 𝛽 → 0	as	𝑥8 → 𝑥J

[EMSOFT	2013]	Duggirala,	Mitra &	Viswanathan:	
Verification	of	annotated	models	from
executions.	EMSOFT	2013,	1-26,	ACM

If	L	is	a	Lipschitz constant	for	f(x,t)	then	
|𝜉 𝑥8, 𝑡 − 𝜉 𝑥J,𝑡 | ≤ 𝑒WX 𝑥8 − 𝑥J

−𝜉 𝑥8,𝑡
−𝑉 𝜉 𝑥8,𝑡 , 𝜉 𝑥J,𝑡
−𝛽 𝑥8,𝑥J,𝑡
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Discrepancy	quantifies	sensitivity



Theorem. (Soundness).	If	Algorithm	returns	safe	or	unsafe,	then	𝐴 is	safe	or	
unsafe.	

DefinitionGiven	HA	𝐴	 = 〈𝑉, 𝐿𝑜𝑐, 𝐴,𝐷, 𝑇	〉,	an	𝝐-perturbation	of	A	is	a	new	
HA	𝐴′ that	is	identical	except,	Θ. = 𝐵c(Θ),	∀	ℓ ∈ 𝐿𝑜𝑐, 𝐼𝑛𝑣. = 𝐵c(𝐼𝑛𝑣) (b)	a	
∈ A,	𝐺𝑢𝑎𝑟𝑑g = 𝐵c(𝐺𝑢𝑎𝑟𝑑g).

A	is	robustly	safe	iff ∃𝜖 > 0,	such	that	A’	is	safe	for	𝑈c upto	time	bound	T,	and	
transition	bound	N.	Robustly	unsafe	iff∃	𝜖 < 0 such	that	𝐴′ is	safe	for	𝑈c.

Theorem. (Relative	Completeness) Algorithm	always	terminates	whenever	
the	A	is	either	robustly	safe	or	robustly	unsafe.
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Guarantees	for	bounded	invariance	
verification	using	discreapancy
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[ATVA	15]	Fan	&	Mitra,	Bounded	verification	with	on-the-Fly	Discrepancy	
Computation.	ATVA	2015:	446-463,	LNCS.
[HSCC	14] Huang	&	Mitra,	Proofs	from	simulations	and	modular	annotations.	
HSCC	2014:	183-192,	ACM.
[CAV	14]	Huang,	Fan,	Mereacre,	Mitra	&	Kwiatkowska:	Invariant	Verification	
of	Nonlinear	Hybrid	Automata	Networks	of	Cardiac	Cells.	CAV	2014:	373-390,	
LNCS.
[TACAS	15]	Duggirala,	Mitra,	Viswanathan,	Potok:	C2E2:	A	Verification	Tool	for	
StateflowModels.	TACAS	2015:	68-82,	LNCS.
[CAV	15]	Duggirala,	Fan,	Mitra,	Viswanathan:	Meeting	a	Powertrain	
Verification	Challenge.	CAV	2015,	536-543,	LNCS.
[CAV	16]	Fan,	Qi,	Mitra,	Viswanathan,	Duggirala:	Automatic	reachability	
analysis	for	nonlinear	hybrid	models	with	C2E2.	CAV	2016:	531-538,	LNCS.

Computing	discrepancy	functions



Verification	in	action:	an	auto-pass	controller

𝑠l	𝑣l	𝑎l

𝜔 𝑠l

Given	a	controller	and	a	safe	
separation	requirement,	we	would	
like	to	check	that	the	system	is	safe	
with	respect	to	
a) range	of	 initial	relative	positions
b) range	of	possible	speeds
c) range	road	friction	conditions
d) possible	behaviors	of	“other”	car
e) range	of	design	parameters

reach	
threshold	
dist.	d

switch	to	
left

overtake
switch	to	
right

gain	
threshold	
dist.	d

abort



Talk	outline
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Invariance

Nothing	“bad”	ever	happens

o From	Simulations	to	Proofs
o Tool	and	applications
o Compositional	analysis

Privacy

conclusion	



Networked	cyberphysical system
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o Local	state	vector	𝑥n ∈ ℜ9,	input	𝑢n ∈ ℜp
o Dynamic	function	𝑓n
o Communication	possibly	with	delays	𝑢n 𝑡 = 𝑥q(𝑡	 − 	𝑑n,q)
Individual	dynamics

�̇�8 𝑡 = 𝑓8(𝑥8 𝑡 , 𝑥J 𝑡 − 𝑑J,8 , 𝑥r(𝑡 − 𝑑r,8))

𝐴8

𝑑8,r 𝑑J,s

𝐴r

𝐴J

𝐴s

�̇�8 = 𝑓(𝑥8,𝑢8)



Challenge:	quantifying	sensitivity	of	large	
networks	with	only	node-level	analysis

Definition.	A	discrepancy is	a	function𝐷:ℜQ7×ℜQ7 →
ℜQ7,	such	that	for any	𝛿 ≥ 0,	any	pair	of	initial	states	
𝜃 − 𝜃. ≤ 𝛿,	any 𝑡:	 𝜉-(𝑡) − 𝜉-% 𝑡 ≤ 𝐷 𝛿, 𝑡 	and
as	𝛿 → 0,	𝐷 → 0.

Goal:	compute	𝐷 only	using	static	analysis	of	nodes	(𝑓n),	
but	not	the	dynamics	of	the	entire	network	𝑓.	
Nodes	are	easier	to	analyze	compare	to	the	network,	especially	
when	the	network	has	communication	delays
Analysis	can	be	applied	to	different	topologies	and	delays
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Input-to-State	(IS)	Discrepancy

Definition.	IS	discrepancy of 𝑓n is defined	by two functions𝛽
and 𝛾 such	that	for	any	initial	states	𝜃, 𝜃. and	any	inputs	𝑢, 𝑢.,

𝜉 𝑡 − 𝜉′ 𝑡 ≤ 	𝛽 𝜃 − 𝜃. , 𝑡 	+ 	x 𝛾 𝑢 𝑠 − 𝑢. 𝑠 𝑑𝑠
X

7
.

Also,	𝛽 → 0	as	𝜃 → 𝜃. , and	𝛾 → 0 as	𝑢 → 𝑢.

20

𝑢

time

𝜃
𝜉(𝑡)

𝜃.
𝜉.(𝑡)

𝑡time	

𝑢(𝑡)

𝑢.(𝑡)�̇� = 𝑓n(𝑥, 𝑢)



Reduced	model	from	IS	discrepancy
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o Constructed	using	IS	discrepancies	and	𝛿 ≥ 0
o Identical	topology	and	delay	as	the	original	system
o Unique	initial	state	[𝛽8(𝛿,0), 𝛽J(𝛿,0)]

o Easy	to	construct	for	different	topologies	and	delays

�̇�J = �̇�J	 𝛿, 𝑡
													+𝛾J(𝑢J)

�̇�8 = �̇�8	 𝛿, 𝑡
													+𝛾8(𝑢8)

𝑑J,8 𝑑8,J

𝐴8
𝛽8,𝛾8

𝐴J
𝛽J,𝛾J

𝑑8,J𝑑J,8



Trajectory	of reduced	model	gives	
discrepancy	of	original
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Theorem.	For any	pair	of	initial	states	of	the	network	
𝜃, 𝜃. with	 𝜃 − 𝜃. ≤ 𝛿, for	all	𝑡: 𝜉-,n 𝑡 − 𝜉-%,n 𝑡 ≤
𝑚n 𝑡 , and	as	𝛿 → 0		the	error	bound	𝑚(𝑡) → 0.

time	
𝑚n(𝑡)

𝛽n(𝛿, 0)

𝐴8

𝐴J

𝑑8,J𝑑J,8

�̇�J = �̇�J	 𝛿, 𝑡
													+𝛾J(𝑢J)

�̇�8 = �̇�8	 𝛿, 𝑡
													+𝛾8(𝑢8)

𝑑J,8 𝑑8,J



Putting	it	all	together	gives	reach	set
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• 𝜉 𝑡 ⨁𝑚(𝑡)	 over-approximates reach	set	from	the	𝛿-
neighborhood	of	𝜃

• Over-approximation	can	be	made	arbitrarily	precise

time	

𝜉(𝑡)

𝜃 time	
𝑚(𝑡)𝛽(𝛿, 0)

𝑚(𝑡)

𝐴8

𝐴J

𝑑8,J𝑑J,8

�̇�J = �̇�J	 𝛿, 𝑡
													+𝛾J(𝑢J)

�̇�8 = �̇�8	 𝛿, 𝑡
													+𝛾8(𝑢8)

𝑑J,8 𝑑8,J



Scaling	to	challenging	benchmarks:	
pacemaker-heart	[CAV	2014]

24

Pacemaker

Cell	2 Cell	3

�̇� = 𝑓(𝑥, 𝑢)
𝑥 ≥ 𝑐

𝑥 ≤ 𝑐
Cell	1

𝑑8,J,𝑑J,8 𝑑8,r,𝑑r,8

𝑑J,r,𝑑r,J



Exploiting	modularity
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�̇�8 = 𝑓g(𝑥8,𝑥J, 𝑥r)
�̇�J = 𝑓|(𝑥J,𝑥8, 𝑥r)
�̇�r = 𝑓} (𝑥r,𝑥8, 𝑥J)

×𝐿~
𝑞g

𝑞| 𝑞}

Module	
1

Module	2 Module	3

Module	
1

Module	
2

Module	3

Module	4 Module	5



Pacemaker	+	cardiac	cell	network	.
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Network #	
Variables

#	ODE #	Sims Run	Time	(s)

8 cells (FH) 16 1 24 33

3	cells 12 2.4×10s 16 105

5	cells 20 2.1×10� 170 945

8	cells 32 5.0×1087 73 2377

3	cells delay	 6 1 16 22

8	cells	delay 16 1 24 52



Talk	outline
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Invariance

Nothing	“bad”	ever	happens

o From	Simulations	to	Proofs
o Tool	and	applications
o Compositional	analysis

Privacy

No	information	leakage

o Privacy	in	control	systems
o Sensitivity	to	private	control
o Cost	of	privacy

conclusion	



Routing	delay	vs.	Location	privacy
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Video	by	Waze



Publications	on	privacy

• [WPES12]:	Z.	Huang,	S.	Mitra and	G.	Dullerud,	Differentially	Private	
Iterative	Synchronous	Consensus.

• [IEEE	Trans.	CNS]:	Z.	Huang,	Y.	Wang,	S.	Mitra and	G.	Dullerud,On	
the	Cost	of	Differential	Privacy	in	Distributed	Control	Systems

• [CDC14]:	Y.	Wang,	Z.	Huang, S.	Mitra and	G.	Dullerud,	Entropy-
minimizing	Mechanism	for	Differential	Privacy	of	Discrete-time	
Linear	Feedback	Systems.

• [ICDCN15]:	Z.	Huang,	S.	Mitra and	N.	Vaidya,	Differentially	Private	
Distributed	Optimization.
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Network	control	with	randomized	
communication

o 𝑁 agents	evolve	for	time	horizon	𝑇
o State	(position)𝑥n

Affected	by	the	environment	 (congestion)
Trajectory:	𝜉 = 𝑥(𝑡) X∈[�]

o Private	data	(waypoints)	𝑝n
Data	set	𝐷 = 𝑝n n∈[~]

o Noisy	report	𝑦n
𝑦n = 𝑥n + 𝑛𝑜𝑖𝑠𝑒
Observation	sequence	𝑂 = 𝑦 𝑡 X∈[�] ∈ 𝑂𝑏𝑠

o Control	decision	𝑢n computed	using	𝑦, 𝑥n ,𝑝n
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Server

…
𝑦n

Environment

𝑥n, 𝑥

Agent 𝑗Agent 𝑖
𝑥n, 𝑝n, 𝑢n, 𝑦n

𝑦



Problem:	design	noise	mechanism	for	privacy	

Proposition. Fixing	a	data	set	𝐷 = 𝑝n n∈[~] and	an	
observation	sequence	𝑂 = 𝑦 𝑡 X∈[�] uniquely	determines	
a	trajectory,	denoted	𝜉3,5.
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𝑦n = 𝑥n + 𝑛n (random	noise)

𝑢n = 𝑔 𝑥n,𝑦,𝑝n
𝑥n� = 𝑓(𝑥n, 𝑥,𝑢n)

Server

…
𝑦n

Environment

𝑥n, 𝑥

Agent 𝑗Agent 𝑖
𝑥n, 𝑝n, 𝑢n, 𝑦n

𝑦



Definition.	Data	sets	𝐷 and	𝐷’ are	adjacent if	𝐷 and	𝐷’
differ	only	in	agent	i’s	data,	and	 𝑝n − 𝑝n. ≤ 𝛿 for	some	
𝛿 > 0.

Definition. The	system	is	𝜖-differentially	private	with	𝜖 >
0,	if		for	any	adjacent	𝐷,𝐷′ and	all	subset	of	observations	
𝑆 ⊆ 𝑂𝑏𝑠, Pr 𝑂3 ∈ 𝑆 ≤ 𝑒c	Pr[𝑂3. ∈ 𝑆]

𝜖 ↓,	privacy	↑;	𝜖 = 0,	no	communication
𝜖 → ∞,	no	privacy

32

Differential	privacy	[Dwork06]



Sensitivity	with		respect	to	private	data

Definition.	Sensitivity is	a	function	𝑆 satisfies:	for	any	
time	𝑡 = 1,2,…𝑇,	for	any	observation	𝑂 ∈ 𝑂𝑏𝑠,	for	any	
𝑎𝑑𝑗(𝐷, 𝐷’),		for	any	agent	𝑖:

|	𝜉3,5(𝑡) − 𝜉3%,5(𝑡)|8 ≤ 𝑆(𝑡)

o S(t)	depends	on	dynamics	𝑓 and	control	𝑔
o For	linear	𝑓 and	𝑔,	S(t)	can	be	found	analytically;	
general	systems	we	use	techniques	from	verification
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Laplace	Mechanism	for	distributed	control

Theorem.	The	following	distributed	control	system	is	𝜖-
differentially	private up to time 𝑇 if	at	each	time	𝑡, each	agent	
adds	an	vector	of	independent	Laplace	noise 𝐿𝑎𝑝(� X �

c
) to	its	actual	

state: 𝑦n 𝑡 = 𝑥n 𝑡 + 𝐿𝑎𝑝 � X �
c

, where

𝐿𝑎𝑝(𝜆) has	the	pdf	𝑓 𝑥 = 8
J�
𝑒�

� �
�

Time	horizon↑,	privacy	level	↑,	sensitivity	↑ ⇒ noise	↑
34



Cost	of	Privacy

o Average	Cost: 𝐶𝑜𝑠𝑡3 = ∑ 𝐄 𝑥n 𝑡 − 𝑝n(𝑡) J�
X�7

o Baseline	cost 𝐶𝑜𝑠𝑡3: the	cost	when	𝑦n 𝑡 = 𝑥n(𝑡)
o The	Cost	of	Privacy	of	a	DP	mechanism	𝑀 is:

𝐂𝐨𝐏 = sup
3
𝐄[𝐶𝑜𝑠𝑡3 − 𝐶𝑜𝑠𝑡3]

Theorem.	For	stable	system	 CoP ∼ 𝑂( �©

~ªcª), otherwise	
grows	exponential	in 𝑇



Summary	of	privacy	work	

oWe	introduced	a	notion	of	privacy	for	
systems	with	feedback,	developed	privacy-
preserving	Laplace	mechanism	for	
dynamical	systems	using	sensitivity	

o Framework	for	analyzing	cost	of	privacy

– Linear	stable dynamics		𝑂( �©

~ªcª
)
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Invariance

Nothing	“bad”	ever	happens

o From	Simulations	to	Proofs
o Tool	and	applications
o Compositional	analysis

Privacy

No	information	leakage

o Privacy	in	control	systems
o Sensitivity	to	private	control
o Cost	of	privacy

conclusion	



Future:	Formal	methods	ó Data

Analysis:	
Simulation	data	+	discrepancy	=>	algorithms	=>	
sound	&complete	invariance	verification	

– Learn	discrepancy	from	simulations	 (CarSim)
– Entropy	and	minimum	data-rate	needed	for	state	

estimation	and	model	detection	 (HSCC	16)

Synthesis:	
Sensitivity	=>	privacy-preserving	algorithms	=>	
trade-off	between	privacy	and	performance

– Controller	synthesis	with	system	ID	[CDC15]
– Distributed	optimization,	learning,	and	fairness
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