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Motivation for Enterprise-wide Optimization

Global chemical/petrochemical industry

Strong international competition process industry
Pressure for reducing costs, inventories and ecological footprint

Major goal: Enterprise-wide Optimization

A major challenge: optimization models and solution methods

At interface with Operations Research and Industrial Engineering
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Enterprise-wide Optimization  (EWO) 

EWO involves optimizing the operations of R&D,
material supply, manufacturing, distribution of a 
company to reduce costs, inventories, ecological 
footprint and to maximize profits, responsiveness . 

Key element: Supply Chain

WellheadWellhead PumpPumpTradingTrading Transfer of  
Crude 

Transfer of  
Crude 

Refinery 
Processing

Refinery 
Processing

Schedule 
Products
Schedule 
Products

Transfer of 
Products 

Transfer of 
Products 

Terminal
Loading
Terminal
Loading

Example: petroleum industry

EWO term coined at FOCAPO-2003 (Marco Duran)
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I. Integration of  planning, scheduling and control

Key issues:

Planning

Scheduling

Control

LP/MILP

MI(N)LP

RTO, MPC

Multiple models

Planning

Scheduling

Control

Economics

Feasibility 
Delivery

Dynamic  
Performance

months, years  

days, weeks

secs, mins

Multiple 
time scales
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Source: Tayur, et al. [1999]

Enterprise Resource
Planning System

Materials Requirement
Planning Systems

Distributions Requirements
Planning System

Transactional IT

External Data
Management Systems

Strategic Optimization
Modeling System

Tactical Optimization
Modeling System

Production Planning Optimization
Modeling Systems

Logistics Optimization
Modeling System

Production Scheduling 
Optimization Modeling Systems

Distributions Scheduling Optimization 
Modeling Systems

Analytical 
IT

Demand 
Forecasting and Order
Management System

Strategic Analysis

Long-Term Tactical 
Analysis

Short-Term Tactical 
Analysis

Operational 
Analysis

Scope

II. Integration of  information and models/solution methods
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Optimization Modeling Framework:
Mathematical Programming
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MINLP: Mixed-integer Nonlinear Programming Problem

Objective function

Constraints
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Linear/Nonlinear Programming (LP/NLP)

LP Codes:
CPLEX, XPRESS, GUROBI, XA

NLP Codes:
CONOPT Drud (1998)
IPOPT Waechter & Biegler (2006)
Knitro Byrd, Nocedal, Waltz (2006)
MINOS Murtagh, Saunders (1995)
SNOPT Gill, Murray, Saunders(2006)
BARON Sahinidis et al. (1998)
Couenne Belotti, Margot (2008)
GloMIQO Misener, Floudas (2012)

Very large-scale models 
Interior-point: solvable polynomial time

Global
Optimization

Large-scale models
Issues:
Convergence
Nonconvexities
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Mixed-integer Linear/Nonlinear Programming (MILP/MINLP)

MILP Codes:
CPLEX, XPRESS, GUROBI, XA

MINLP Codes:
DICOPT (GAMS) Duran and Grossmann (1986)
a-ECP Westerlund and Petersson (1996)
MINOPT Schweiger and Floudas (1998)
MINLP-BB (AMPL)Fletcher and Leyffer (1999)
SBB (GAMS) Bussieck (2000)
Bonmin (COIN-OR) Bonami et al (2006)
FilMINT Linderoth and Leyffer (2006)
BARON Sahinidis et al. (1998)
Couenne Belotti, Margot (2008)
GloMIQO Misener, Floudas (2012)

Global
Optimization

Great Progress over last decade

New codes over last decade
leveraging progress in MILP/NLP

Issues:
Convergence
Nonconvexities
Scalability
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Modeling systems 

Mathematical Programming 

GAMS (Meeraus et al, 1997) 

AMPL (Fourer et al., 1995) 

AIMSS (Bisschop et al. 2000) 

1. Algebraic modeling systems => pure equation models 

2. Indexing capability => large-scale problems 

3. Automatic differentiation => no derivatives by user 

4. Automatic interface with  
 LP/MILP/NLP/MINLP solvers 
 

Constraint Programming 
OPL (ILOG), CHIP (Cosytech), Eclipse Have greatly facilitatedHave greatly facilitated development and

implementation of Math Programming models
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Boolean Variables

Logic Propositions

Disjunctions

Generalized Disjunctive Programming (GDP)

Continuous Variables

Raman, Grossmann (1994)

Codes:
LOGMIP (GAMS-Vecchietti, Grossmann, 2005)
EMP (GAMS-Ferris, Meeraus, 2010)

Other logic-based: Constraint Programming (Hooker, 2000)
Codes: CHIP, Eclipse, ILOG-CP
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Optimization Under Uncertainty
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Multistage Stochastic Programming

Special case: two-stage programming (N=2)

Birge & Louveaux, 1997; Sahinidis, 2004

Exogeneous uncertainties
(e.g. demands)

x1 stage 1

Here and now
x2 recourse (stage 2)
Wait and see


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Multiobjective Optimization

-constraint method: Ehrgott (2000)

Parametric programming: Pistikopoulos, Georgiadis and Dua (2007)

f1

f2

Pareto-optimal
solutions
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Decomposition Techniques

13

A

D1

D3

D2

Complicating Constraints
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Geoffrion (1972) Guinard (2003)

complicating
constraints

D1

D3

D2
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Benders decomposition

Benders (1962), Magnanti, Wing (1984)

Widely used in EWO Applied in 2-stage Stochastic Programming
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PITA Project
Special industrial interest group in CAPD:
“Enterprise-wide Optimization for Process Industries” 

http://egon.cheme.cmu.edu/ewocp/

- Novel planning and scheduling models, including consideration of uncertainty
- Effective integration of Production Planning, Scheduling and Real–time Optimization
- Optimization of Entire Supply Chains

Overall Goal:

Researchers:
Carnegie Mellon: Ignacio Grossmann (ChE)

Larry Biegler (ChE)
Nick Sahinidis (ChE)
John Hooker (OR)
Nick Secomandi (Optns Mgmt)

Multidisciplinary team:
Chemical engineers, Operations Research, Industrial Engineering



EWO Projects and case studies with partner companies
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ABB: Integrating RTN scheduling models with ISA-95 standard
Contact: Iiro Harjunkoski Ignacio Grossmann, Pedro Castro

Air Liquide: Optimal Production of Industrial Gases with Uncertain Energy Prices
Contact: Ajit Gopalakrishnan, Irene Lotero, Brian Besancon Ignacio Grossmann, Carlos Mendez, Natalia Basan

Aurubis: Optimal Scheduling for Copper Concentrates Operations 
Contact: Pablo Garcia-Herreros, Bianca Springub Ignacio Grossmann, Brenno Menezes, Ynkkai Song

Braskem: Dynamic Optimization of Polypropylene Reactors
Contact: Rita Majewski, George Ostace Larry Biegler, Bobby Balsom

Dow:  Solution Strategies for Dynamic Warehouse Location under Discrete Transportation Costs
Contact: John Wassick, Anshul Agrawal, Matt Bassett Ignacio Grossmann, Braulio Brunaud

Dow:  Optimization Models for Reliability-based Turnaround Planning Integrated Sites 
Contact: Satyajith Amaran, Scott Bury, J. Wassick Nick Sahinidis, Sreekanth Rajagopalan

Dow:  Parameter Estimation and Model Discrimination of Batch Solid-liquid Reactors
Contact: Mukund Patel, John Wassick Larry Biegler, Yajun Wang 

ExxonMobil: Optimal Design and Planning of Electric Power Networks
Contact: A. Venkatesh, D. Mallapragada, D. Papageorgiou Ignacio Grossmann, Cristiana Lara

Mitsubishi E: Optimization circuitry arrangements for heat exchangers
Contact: Christopher Laughman, Arvind U. Raghunathan Nick Sahinidis, Nick Ploskas

P&G:              Kinetic Model Parameter Estimation for Product Stability Contact: Ben Weinstein
Larry Biegler, Mark Daichendt

Praxair: Mixed-Integer Programming Models for Optimal Design of Reliable Chemical Plants
Contact: Jose Pinto, Sivaraman Ramaswam Ignacio Grossmann, Yixin Ye

Praxair: Robust Tactical Planning of Multi-period Vehicle Routing under Customer Order Uncertainty
Contact: Jose Pinto, Arul Sundramoorthy Chrysanthos Gounaris, Anirudh Subramanyam

SKInnovation: Complex Crude-oil Refinery Scheduling Optimization
Contact: Faram Engineer Ignacio Grossmann, Brenno Menezes

Total: Integration of Reservoir Modeling with Oil Field Planning and Infrastructure Optimization
Contact: Meriam Chebre Ignacio Grossmann, KinshukVerma
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- Linear vs Nonlinear models 

Major Issues

- The multi-scale optimization challenge

- The uncertainty challenge

- Economics vs. performance
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The multi-scale optimization challenge
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Integrated Planning and Scheduling Batch Plant

• Batch units operating in parallel
• Sequence-dependent changeovers between products groups
• A subset of products are blended

Slot-based MILP model

Detailed MILP Planning
Traveling-salesman constraints

Bi-level Decomposition

Calfa, Agarwal, Wassick, Grossmann (2013)
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Example
2 parallel units
2 raw materials
7 products (6 individual and 1 blended)
10 customers
Time horizon
12 weeks

Optimal Schedule (week 1)

Bilevel decomposition converged in one iteration!
Upper level MILP:   1,032 0-1     1,800 cont.v.    3,300 constr.    2.5 sec
Lower level MILP: 19,600 0-1   23,100 cont.v.  15,300 constr     479 sec
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Multisite planning and scheduling

Month 1 Month 2 Month n -1 Month n

Multi-site Network

Market 3

Market 2

Market 1

AD B C

Detailed production schedule

Given:

• Network of production sites  and markets

• Production rates 

• Forecast demands over time horizon

• Sequence-dependent transition times  

• All costs and product prices

• Shipment and storage max capacities

Determine:

• Product assignment to sites

• Production sequencing

• Detailed production scheduling

• Production and shipment volumes

• Inventory levels

Objective: Maximize profit
Profit  = Sales 

- Operating costs - Inventory costs 

- Distribution costs- Changeover costs

Production 
Site 1

Production 
Site 2

Production 
Site n-1

Production 
Site n

Terrazas, Grossmann (2011)
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Multi-site planning and scheduling involves different
temporal and spatial scales

Planning

Scheduling

Si
te

 1 Week 1 Week 2 Week t

hr

Week 1 Week 2 Week t

Planning

Scheduling

Si
te

 s Week 1 Week 2 Week t

hr

Week 1 Week 2 Week t

Weekly aggregate 
production:
• Amounts
• Aggregate sequencing  

model
(TSP constraints) 

Detailed operation
• Start and end times
• Allocation to parallel 

lines 

Different Temporal Scales

D
ifferent Spatial Scales

Weekly aggregate 
production:

Detailed operation
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Bilevel decomposition + Lagrangean decomposition

Market 3

Market 2

Market 1

Production 
Site 1

Production 
Site 2

Production 
Site n-1

Production 
Site n

ths ˆ
sht

Shipments ( sht) leaving production sites

Shipments ( sht) arriving at marketsths ˆ

sht

• Bilevel decomposition
o Decouples planning from 

scheduling
o Integrates across temporal 

scale 

• Lagrangean decomposition
o Decouples the solution of 

each production site
o Integrates across spatial 

scale
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Large-scale problems

23

Full space
Bi-level
Bi-level + Lagrangean



Liquid Oxygen

Electricity

Liquid Nitrogen

Liquid Argon

Gas. Oxygen

Gas. Nitrogen

LOX storage

LIN storage

LAR storage

Air (free!)

Pipelines

Air Separation Plant

Given:

- Power-intensive plant
- Products g G (Storable and Nonstorable)
- Product demands dg

t for season tT
- Seasonal electricity prices on 
an hourly basis et,h, tT, h H

- Upgrade options uU of existing equipment
- New equipment options nN
- Additional storage tanks stST

Determine:

- Production levels 
- Mode of operation
- Sales
- Inventory levels

- Upgrades for equipment
- Purchase of new equipm.
- Purchase of new tanks

for each
season on an 
hourly basis

With minimum investment and operating costs

Prg
t,h

ym,o
t,h ,  ym

t,h

Sg
t,h

INVg
t,h

2

VSst,g
t

VUm,u
t

VNn
t

Optimal Multi-scale Capacity Planning under 
Hourly Varying Electricity Prices

Price forecast

Mitra, Grossmann, Pinto, Arora (2012)
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Incorporating design decisions: seasonal variations 
drive the development of a seasonal model 

Year 1, spring: 
Investment decisions

Spring

Mo Tu We Th Fr Sa Su

Summer Fall Winter

Mo Tu Su… Mo Tu Su… Mo Tu Su…

Year 2, spring: 
Investment decisions

…

• Horizon: 5-15 years, each year has 4 periods (spring, summer, fall, winter)

• Each period is represented by one week on an hourly basis

• Each representative week is repeated in a cyclic manner (13 weeks reduced to 1 week)
(8736 hr vs. 672 hr)

• Design decisions are modeled by discrete equipment sizes

Year 1, summer: 
Investment decisions

Year 1, fall: 
Investment decisions

Year 1, winter: 
Investment decisions

0.00 

50.00 

100.00 

150.00 

200.00 

250.00 

1 25 49 73 97 121 145 

Spring 

0.00 

50.00 

100.00 

150.00 

200.00 

250.00 

1 25 49 73 97 121 145 

Summer 

0.00 

50.00 

100.00 

150.00 

200.00 

250.00 

1 25 49 73 97 121 145 

Fall 

0.00 

50.00 

100.00 

150.00 

200.00 

250.00 

1 25 49 73 97 121 145 

Winter 
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min

MILP model for multi-scale capacity planning 

Objective
Operational
Disjunction over the modes
that describe the 
feasible region

Operational
Mass balances for inventory, 
constraints related to demand

Strategic
Additional storage

Strategic
Additional equipment

Idea: additional modes for which all
variables are controlled by the 
corresponding binary investment variable

Strategic
Equipment replacement

Idea: the corresponding mode 
has an alternative feasible region

Terms for the objective functio

Operational
Logic constraints for transitions 
(e.g. minimum uptime/downtime)



Air Separation Plant

Retrofitting an air separation plant

LIN
1.Tank

LIN
2.Tank?

LOX
1.Tank

LOX
2.Tank?

LAR
1.Tank

LAR
2.Tank?

Liquid Oxygen

Liquid Nitrogen

Liquid Argon

Gaseous Oxygen

Gaseous Nitrogen

Existing equipment

Option A

Option B ?
(upgrade)

Additional Equipment

Spring - Investment decisions: 
(yes/no)
- Option B for existing equipment? 
- Additional equipment? 
- Additional Tanks?

Spring Summer Fall Winter

Fall  - Investment decisions: (yes/no)
- Option B for existing equipment? 
- Additional equipment? 
- Additional Tanks?

Superstructure

Time

Pipelines

• The resulting MILP has 191,861 constraints and 161,293 variables (18,826 binary.)
• Solution time: 38.5 minutes (GAMS 23.6.2, GUROBI 4.0.0, Intel i7 (2.93GHz) with 4GB RAM



Investments increase flexibility help realizing savings.
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Power consumption w/ investment Power consumption w/o investment
Summer prices in $/MWh
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nt
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le
ve
l

Hour of a typical week in the summer season
outage level LN2‐w/ investment 2‐tanks capacity

1‐tank capacity LN2‐w/o investment

Remarks on case study

• Annualized costs:
$5,700k/yr

• Annualized savings:
$400k/yr

• Buy new liquefier 
in the first time period 
(annualized investment 
costs: $300k/a)

• Buy additional LN2 
storage tank ($25k/a)

• Don’t upgrade existing 
equipment ($200k/a)
equipment: 97%.

Power consumption

LN2 inventory profile

Source: CAPD analysis; Mitra, S., I.E. Grossmann, J.M. Pinto and Nikhil Arora, "Integration of strategic and operational decision- making 
for continuous power-intensive processes”, submitted to ESCAPE, London, Juni 2012
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Linear vs. Nonlinear



Nonlinear CDU Models in 
Refinery Planning Optimization

Typical Refinery Configuration  (Adapted from Aronofsky, 1978)

Cat Ref

Hydrotreatment

Distillate
blending

Gas oil
blending

Cat Crack

CDU

Crude1,
…

Crude2,
….

butane
Fuel gas

Prem.
Gasoline

Reg.
Gasoline

Distillate

Fuel Oil

Treated Residuum

SR Fuel gas

SR Naphtha

SR Gasoline

SR Distillate

SR GO

SR Residuum

Product 
Blending

30

Alattas, Palou-Rivera, Grossmann (2010)
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Nonlinear FI Model  (Fractionating Index)

 FI Model is crude independent
 FI values are characteristic of the column
 FI values are readily calculated and updated from refinery data

 Avoids more complex, nonlinear modeling equations
 Generates cut point temperature settings for the CDU
 Adds few additional equations to the planning model 

LP planning models

Fixed yield model
Swing cuts model
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Refinery Planning Models



Planning Model Example Results

 Comparison of nonlinear fractionation index (FI) with the
fixed yield (FY) and swing cut (SC) models

 Economics:   maximum profit

Model Case1 Case2 Case3

FI 245 249 247

SC 195 195 191

FY 51 62 59

32

Crude1 Louisiana Sweet Lightest

Crude2 Texas Sweet

Crude3 Louisiana Sour

Crude4 Texas Sour Heaviest

FI yields highest profit
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Model statistics LP vs NLP
 FI model larger number of equations and variables
 Impact on solution time
 ~30% nonlinear variables

Model Variables Equations
Nonlinear 
Variables

CPU 
Time Solver

2 Crude
Oil Case

FY 128 143 0.141 CPLEXSC 138 163 0.188
FI 1202 1225 348 0.328 CONOPT

3 Crude
Oil Case

FY 159 185 0.250 CPLEXSC 174 215 0.281
FI 1770 1808 522 0.439 CONOPT

4 Crude
Oil Case

FY 192 231 0.218 CPLEXSC 212 271 0.241
FI 2340 2395 696 0.860 CONOPT



Reservoirswells

facilities

Offshore field having several reservoirs (oil, gas, water)

Gupta, Grossmann (2011)

Optimal Development of Oil Fields (deepwater)

FPSO (Floating Production Storage Offloading)

Decisions:
Number and capacity of FPSO facilities
Installation schedule for facilities
Number of sub-seawells to drill
Oil/gas production profile over time

Objective:
Maximize the Net Present Value

(NPV) of the project

MINLP model
- Nonlinear reservoir behavior
- Three components (oil, water, gas)
- Lead times for FPSO construction
- FPSO Capacity expansion
- Well Drilling Schedule

34



20 Year Time Horizon
10 Fields
3 FPSOs
23 Wells
3 Yr lead time FPSO
1 Yr lead time expansion

FPSO-2 FPSO-3

Field-2

Field-1

Field-3 Field-5

FPSO-1

Field-4

Total Oil/Gas 
Production

Field-10

Field-6

Field-8

Field-9

Field-7

Yr4

Yr4

Yr4Yr5

Yr5

Yr5 Yr6

Yr7
Yr7

Yr7

Optimal NPV = $30.946 billion
Example

Yr 1 Yr 2

Yr 1

0
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200
250
300
350
400
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t1
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t1
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t1
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t1
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t1
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t1
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t1
8

t1
9

t2
0

x 
(k

st
b/

d)

Time

Oil Flowrate

fpso1

fpso2

fpso3

1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19   20
35
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The uncertainty challenge



Given: 

Minimize 
cost by:

Resilient Supply Chain Design

37

• Reliable plant

• Candidate locations for
DCs with risk of disruption

• Set of customer with
deterministic demands for
multiple commodities

• Set of scenarios and their
associated probabilities

• Selecting DCs locations

• Determining storage capacity for each
commodity in selected DCs

• Allocating demands in every scenario

Garcia-Herreros, Grossmann, Wassick (2014)



Distribution Strategy
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Disruptions give rise to scenarios

DCs serve different customers in different scenarios

Rerouting produces a stochastic demand on DCs

1. Snyder L. V.; Shen, Z-J. M. Fundamentals of Supply Chain Theory; John Wiley & Sons: Hoboken (NJ), 2011. pp. 63-116.



Two-Stage Stochastic Programming
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Se
t o

f c
us

to
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s:

 I

Set of DC candidate locations: J

Set of scenarios: S

x1

x2

x3
ys,|J|,i,k

c1,k

c2,k

c3,k

First stage decisions:
DC selection: ݔ௝ ∈ 0,1
 DC capacities:  ௝ܿ,௞ ∈ ܴା

Se
t o

f c
om

m
od

iti
es

: K

Second stage decisions:
Demand allocation: ௦,௝,௜,௞ݕ ∈ ܴା

Penalties: ௦,|௃|,௜,௞ݕ ∈ ܴା

1. Birge, J.; Louveaux, F. V. Introduction to stochastic programming (2nd Ed.); Springer: New York (NY), 2011.

Objective:
 Investment cost
 Expected cost of distribution



Industrial	Instance
Supply	chain	network	optimization:
• 1	Production	plant
• 29	candidate	DCs	with	disruption	probabilities	between	0.5%	and	3%
• 110	customers	
• 61	commodities
Total	number	of	scenarios:	229	≈	537	million

40

Deterministic	
problem

Reduced	problem	
1

Reduced	problem	
2

Relevant	set	of	
scenarios

Number of scenarios 1 30 436
Max. number of simultaneous disruptions 0 1 2
Probability of scenarios 50.3% 85.4% 98.5%

Expected	costs	
for	scenario	set

Investment (MM $) 18.47 18.78 21.56
Total (MM $): 34.09 48.68 53.85

Solution
Optimality gap for scenario set 0% 0.44% 0.87%
Full problem upper bound 57.40 56.32 55.89
Full problem lower bound 48.15 52.43 53.81

Computational
statistics

No. of constraints 11,849 304,256 4,397,984
No. of continuous variables 10,080 251,186 3,626,670
No. of binary variables 29 29 29
Solution time 0.1	min 289	mina 7,453	mina

a:	Strengthened	Benders	multi‐cut



41

Economics vs. performance?

Multiobjective Optimization Approach

Bi-level optimization
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Possible Plant Site
Supplier Location

Distribution Center
Customer Location

Optimal Design of Responsive Process Supply Chains

Objective: design supply chain polystyrene 
resisns under responsive and economic criteria You, Grossmann (2008)



Production Network of Polystyrene Resins

Source: Data Courtesy Nova Chemical Inc.   http://www.novachem.com/

Three types of plants:

Basic Production Network

Single Product

Multi Product

Multi Product

Plant I:    Ethylene + Benzene          Styrene (1 products)

Plant II:   Styrene          Solid Polystyrene (SPS)  (3 products)

Plant III:  Styrene          Expandable Polystyrene (EPS) (2 products)
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Lead Time under Demand Uncertainty

Inventory (Safety Stock)
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• Objective Function:
 Max: Net Present Value 

 Min: Expected Lead time
• Constraints:

 Network structure constraints
Suppliers – plant sites Relationship
Plant sites – Distribution Center
Input and output relationship of  a plant
Distribution Center – Customers 
Cost constraint

Bi-criterion

Choose Discrete (0-1), continuous variables

 Cyclic scheduling constraints
Assignment constraint
Sequence constraint
Demand constraint
Production constraint
Cost constraint

 Probabilistic constraints
Chance constraint for stock out
(reformulations)

Bi-criterion Multiperiod MINLP Formulation

 Operation planning constraints
Production constraint
Capacity constraint
Mass balance constraint
Demand constraint
Upper bound constraint

46



300

350

400

450

500

550

600

650

700

750

1.5 2 2.5 3 3.5 4 4.5 5 5.5
Expected Lead Time (day)

N
PV

 (M
$)

with safety stock
without safety stock

Pareto Curves – with and without safety stock

47



0

50

100

150

200

Sa
fe

ty
 S

to
ck

 (1
0^

4 
T

)

1.51 2.17 2.83 3.48 4.14 4.8

Expceted Lead Time (day)

EPS in DC2
SPS in DC2
EPS in DC1
SPS in DC1

Safety Stock Levels - Expected Lead Time

More inventory, 
more responsive

Responsiveness

48



Motivation
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Industrial gas markets are dynamic:
• Suppliers must anticipate demand growth
• Most markets are served locally

Capacity expansion is a major strategic decision:
• Requires large investment cost
• Benefits are obtained over a long horizon

Benefits are sensitive to market behavior: 
• Market preferences
• Economic environment

Sensitivity can be reduced by assuming rational behavior:
• Producers try to maximize their profit
• Markets try to minimize their cost

Need to model the conflicting interests of producer and markets

Optimization

Variability

Bilevel optimization

Bi-level Optimization for Capacity
Planning in Industrial Gas Markets



Given:	

• Set of capacitated plants and candidate
locations for new plants from leading
supplier

• Set of plants from independent
suppliers with limited capacity

• Rational markets that select their
suppliers according to their own
objective function

• Deterministic demands over the time
horizon

Problem	Statement

50

Maximize	net	present	value	(NPV):

• Determine	expansion	plan

• Considering	optimal	distribution	strategy	in	each	time‐period



Bilevel Approach	(MILP)
Capacity	expansion	planning	with	rational	market:	
Plants	are	divided	in	two:	plants	from	leading	supplier	(I1)	and	plants	from	independent	suppliers	(I2)

max		 ܸܰܲ ൌ 	෍
1

1 ൅ ܴ ௧ ෍෍ ௧ܲ,௜,௝ݕ௧,௜,௝
௝∈௃௜∈ூభ

െ ෍ ௧,௜ݒ௧,௜ܣ ൅ ௧,௜ݓ௧,௜ܤ ൅ ௧,௜ݔ௧,௜ܧ ൅෍ ௧,௜,௝ݕ௧,௜ܧ ൅ ௧,௜,௝ݕ௧,௜,௝,௞ܩ
௝∈௃௜∈ூభ௧∈்

	

s.t.

51

௧,௜ݓ ൌ ௧ܸ,௜
௢ ൅ ෍ ௧,௜ݒ

௧

௧ᇲୀଵ

௧,௜ݔ ൑ ௧,௜ݓ

ܿ௧,௜ ൌ ௧,௜௢ܥ ൅ ෍ ௧ିଵ,௜ݔܪ

௧

௧ᇲୀଵ

min		෍
1

1 ൅ ݎ ௧ ෍෍ ௧ܲ,௜,௝ݕ௧,௜,௝
௜∈ூ௝∈௃௧∈்

s.t.

௝ܿ,௞, ݕ௦,௝,௜,௞ 		൒ 		0 ,௧,௜ݒ   ; ,௧,௜ݓ ௝ݔ ∈ 0, 1

(⩝ t	ϵ	T,		i ϵ	I1 )

(⩝ t	ϵ	T,		i ϵ	I1 )

(⩝ t	ϵ	T,		i ϵ	I1 )

(⩝ t	ϵ	T,		i ϵ	I1 )

(⩝ t	ϵ	T,		j	ϵ	J )

(⩝ t	ϵ	T,		i ϵ	I	,	 j	ϵ	J	)

(⩝ t	ϵ	T,		i ϵ	I2 )

All	markets	are	satisfied

Markets	minimize	cost	paid

Capacity	of	plants	from	leader

෍ݕ௧,௜,௝ ൑ ܿ௧,௜
௝∈௃

෍ݕ௧,௜,௝ ൑ ௧,௜ܥ
௝∈௃

෍ݕ௧,௜,௝
௜∈ூ

ൌ ௧,௝ܦ Capacity	of	independent	plants

Capacity	expansion

Expand	only	open	plants

Invest	in	new	plants
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Problem	structure:
 3	existing	plants	which	can	be	
expanded

 1	new	candidate	plant
 3	existing	plants	which	can	not	be	
expanded

 15	markets	with	deterministic		
demand	for	1	commodity

 20	time‐periods	(quarters)

Illustrative Example

Formulations:
• Single‐level (SL): leader selects the markets to satisfy
• Single‐level evaluation (SL‐eval): evaluation of single‐level investment

decisions in a market driven environment
• Bilevel KKT (KKT): KKT reformulation of the bilevel problem
• Bilevel Primal‐Dual (P‐D): Primal‐dual reformulation of the bilevel

problem
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Computational	statistics:

Results:

Bilevel optimization	yields	67%	higher	NPV	(354 vs	212	million)when	
compared	to	single‐level	expansion	strategy	

Results

Statistics SL SL‐eval KKT P‐D
No. of constraints: 680 520 8,460 4,380
No. of continuous variables: 2,240 2,240 6,060 4,220
No. of binary variables: 240 0 3,080 240
Solution time (CPLEX): 0.10	s 0.02 s 193	s 5.72	s
Optimality gap: 0.1% 0.1% 0.1% 0.1%

Items of objective function SL SL‐eval KKT P‐D
Income from sales [MM$]: 1,171 805 794 794
Investment in new plants [MM$]: 0 0 0 0
Capacity expansion cost [MM$]: 199 199 58 58
Maintenance cost[MM$]: 94 94 94 94
Production cost[MM$]: 424 292 279 279
Transportation cost[MM$]: 14 8 9 9
Total NPV [MM$]: 440 212 354 354
Market cost[MM$]: 1,239 1,234 1,234 1,234
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Conclusions

1. Enterprise-wide Optimization (EWO) of great industrial interest
Great economic impact for effectively managing complex supply chains

4. Computational challenges lie in:
a) Large-scale optimization models (decomposition, advanced computing )
b) Handling uncertainty (stochastic programming) 

3. Key components in EWO: Planning and Scheduling
Modeling challenge:
Multi-scale modeling (temporal and spatial integration )
Linear vs. Nonlinear

2. Mathematical Programming: major modeling framework


