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Dynamic Programming

A UNIVERSAL METHODOLOGY FOR SEQUENTIAL DECISION MAKING

Applies to a very broad range of problems
Deterministic <—> Stochastic

Combinatorial optimization <—> Optimal control w/ infinite state and control
spaces

Approximate DP (Neurodynamic Programming, Reinforcement Learning)
Allows the use of approximations

Applies to very challenging/large scale problems

Has proved itself in many fields, including some spectacular high profile successes

Standard Theory
Analysis: Bellman’s equation, conditions for optimality

Algorithms: Value iteration, policy iteration, and approximate versions

Abstract DP aims to unify the theory through mathematical abstraction

Semicontractive DP an important special case - focus of new research
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Infinite Horizon Deterministic Discrete-Time Optimal Control

Systemuk = µk(xk) xk

) µk

xk+1 = f(xk, uk)
“Destination” t

t (cost-free and absorbing) :

An optimal control/regulation problem
or

An arbitrary space shortest path problem

Cost: g(xk, uk) ≥ 0 VI converges to

System: xk+1 = f (xk , uk ), k = 0, 1, where xk ∈ X , uk ∈ U(xk ) ⊂ U

Policies: π = {µ0, µ1, . . .}, µk (x) ∈ U(x), ∀ x

Cost g(x , u) ≥ 0. Absorbing destination: f (t , u) = t , g(t , u) = 0, ∀ u ∈ U(t)

Minimize over policies π = {µ0, µ1, . . .}

Jπ(x0) =
∞∑

k=0

g
(
xk , µk (xk )

)
where {xk} is the generated sequence using π and starting from x0

J∗(x) = infπ Jπ(x) is the optimal cost function

Classical example: Linear quadratic regulator problem; t = 0

xk+1 = Axk + Buk , g(x , u) = x ′Qx + u′Ru
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Optimality vs Stability - A Loose Connection

Loose definition: A stable policy is one that drives xk → t , either asymptotically or
in a finite number of steps

Loose connection with optimization: The trajectories {xk} generated by an optimal
policy satisfy J∗(xk ) ↓ 0 (J∗ acts like a Lyapunov function)

Optimality does not imply stability (Kalman, 1960)

Classical DP for nonnegative cost problems (Blackwell, Strauch, 1960s)
J∗ solves Bellman’s Eq.

J∗(x) = inf
u∈U(x)

{
g(x , u) + J∗

(
f (x , u)

)}
, x ∈ X , J∗(t) = 0,

and is the “smallest" (≥ 0) solution (but not unique)

If µ∗(x) attains the min in Bellman’s Eq., µ∗ is optimal

The value iteration (VI) algorithm

Jk+1(x) = inf
u∈U(x)

{
g(x , u) + Jk

(
f (x , u)

)}
, x ∈ X ,

is erratic (converges to J∗ under some conditions if started from 0 ≤ J0 ≤ J∗)

The policy iteration (PI) algorithm is erratic
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A Linear Quadratic Example (t = 0)

System: xk+1 = γxk + uk (unstable case, γ > 1). Cost: g(x ,u) = u2

J∗(x) ≡ 0, optimal policy: µ∗(x) ≡ 0 (which is not stable)

Bellman Eq.→ Riccati Eq. P = γ2P/(P + 1) - J∗(x) = P∗x2, P∗ = 0 is a solution

Riccati Equation Iterates

γ2P
P+1

P0 Riccati Equation Iterates P PP1 P245◦

Quadratic cost functions

Quadratic cost functions J(x) = Px2

Region of solutions of Bellman’s Eq. P ∗ = 0 = 0 P̂ = γ2 − 1

A second solution P̂ = γ2 − 1: Ĵ(x) = P̂x2

Ĵ is the optimal cost over the stable policies

VI and PI typically converge to Ĵ (not J∗!)

Stabilization idea: Use g(x , u) = u2 + δx2. Then J∗δ (x) = P∗δ x2 with limδ↓0 P∗δ = P̂
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Summary of Analysis I: p-Stable Policies

Idea: Add a “small" perturbation to the cost function to promote stability
Add to g a δ-multiple of a “forcing" function p with p(x) > 0 for x 6= t , p(t) = 0

The resulting “perturbed" cost function of π is

Jπ,δ(x0) = Jπ(x0) + δ
∞∑

k=0

p(xk ), δ > 0

Definition: A policy π is called p-stable if

Jπ,δ(x0) <∞, ∀ x0 with J∗(x0) <∞ (this is independent of δ)

The role of p:
I Ensures that p-stable policies drive xk to t (p-stable implies p(xk )→ 0)
I Differentiates stable policies by “speed of stability" (e.g., p(x) = ‖x‖ vs p(x) = ‖x‖2)

The case p(x) ≡ 1 for x 6= t is special

Then the p-stable policies are the terminating policies (reach t in a finite number of
steps for all x0 with J∗(x0) <∞)

The terminating policies are the “most stable" (they are p-stable for all p)
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Summary of Analysis II: Restricted Optimality

(0) = 0 J JJ J∗ Ĵ J+

Region of solutions of Bellman’s Eq.
Region of solutions of Bellman’s Eq.

Ĵp

J∗, Ĵp, and J+ are solutions of Bellman’s Eq. with J∗ ≤ Ĵp ≤ J+

VI → J+ from J0 ≥ J+VI → Ĵp from J0 ∈ Wp

Ĵp(x): optimal cost Jπ over the p-stable π, starting at x

J+(x): optimal cost Jπ over the terminating π, starting at x

Why is Ĵp a solution of Bellman’s Eq.?

p-unstable π cannot be optimal in the δ-perturbed problem, so Ĵp,δ ↓ Ĵp as δ ↓ 0

Take limit as δ ↓ 0 in the (p, δ)-perturbed Bellman Eq. (which is satisfied by Ĵp,δ)

Favorable case is when J∗ = J+ (often holds). Then:
J∗ is the unique solution of Bellman’s Eq.; optimal policy is p-stable

VI and PI converge to J∗ from above
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Summary of Analysis III: Favorable Case J∗ = J+

Path of VI Set of solutions of Bellman’s equation ĴC

VI converges from Wp ĴC J∗

WS,C =
{
J ∈ E(X) | ĴC ≤ J ≤ J̃ for some J̃ ∈ S

}

J(1) = min
{
exp(b), exp(a)J(2)

}

J(2) = exp(a)J(1)

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − ϵ µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

1

Path of VI Set of solutions of Bellman’s equation ĴC 0

VI converges from Wp ĴC J⇤ Ĵ+ W⇤

WS,C =
�
J 2 E(X) | ĴC  J  J̃ for some J̃ 2 S

 

J(1) = min
�
exp(b), exp(a)J(2)

 

J(2) = exp(a)J(1)

�k � Dk(x, xk) �k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl�)(x, z)

rx(µ) � ✏ µ Z (u, 1)

= Min Common Value w⇤

= Max Crossing Value q⇤

Positive Halfspace {x | a0x  b}

a↵(C) C C \ S? d z x

Hyperplane {x | a0x = b} = {x | a0x = a0x}

x⇤ x f
�
↵x⇤ + (1 � ↵)x

�

x x⇤

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

1

Path of VI Set of solutions of Bellman’s equation ĴC 0

Paths of VI Unique solution of Bellman’s equation ĴC 0
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}

J(2) = exp(a)J(1)

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)
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y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − ϵ µ Z (u, 1)
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Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

1
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γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)
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x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

1

Path of VI Set of solutions of Bellman’s equation ĴC 0

Paths of VI Unique solution of Bellman’s equation ĴC 0
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WS,C =
{
J ∈ E(X) | ĴC ≤ J ≤ J̃ for some J̃ ∈ S
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J(1) = min
{
exp(b), exp(a)J(2)

}

J(2) = exp(a)J(1)

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − ϵ µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

1

Well-Behaved Region Well-Behaved Region J0

WS,C =
�
J | J*

C  J
 

WS,C =
�
J | J*

C  J  J̃ for some J̃ 2 S
 

Fixed Points of T S = E(X) Ĵ+ = J* Limit Region

Paths of VI Under Compactness

Path of VI Set of solutions of Bellman’s equation J*
C 0

Paths of VI Unique solution of Bellman’s equation ĴC 0

VI converges from Wp ĴC J⇤ Ĵ+ W⇤

WS,C =
�
J 2 E(X) | ĴC  J  J̃ for some J̃ 2 S

 

J(1) = min
�
exp(b), exp(a)J(2)

 

J(2) = exp(a)J(1)

�k � Dk(x, xk) �k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl�)(x, z)

rx(µ) � ✏ µ Z (u, 1)

= Min Common Value w⇤

= Max Crossing Value q⇤

Positive Halfspace {x | a0x  b}

a↵(C) C C \ S? d z x

Hyperplane {x | a0x = b} = {x | a0x = a0x}

1

J∗ is the unique nonnegative solution of Bellman’s Eq. [with J∗(t) = 0]

VI converges to J∗ from J0 ≥ J∗ (or from J0 ≥ 0 under mild conditions)

Optimal policies are p-stable

A “linear programming" approach works [J∗ is the “largest" J satisfying
J(x) ≤ g(x , u) + J

(
f (x , u)

)
for all (x , u)]
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Summary of Analysis IV: Unfavorable Case J∗ 6= J+

VI converges to J+

from within W+
VI converges to Ĵp

from within Wp

W+ =
{
J | J ≥ J+, J(t) = 0

}

Ĵp

Ĵp′

p Wp
t W+

Wp′

Wp: Functions J ≥ Ĵp with J

with J(xk) → 0 for all p-stable π

C J∗

Ĵ+

W∗

C 0

Path of VI Set of solutions of Bellman’s equation
Set of solutions of Bellman’s equation

Region of VI convergence to Ĵp isWp

Wp can be viewed as a set of “Lyapounov functions" for the p-stable policies
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Another Example: A Deterministic Shortest Path Problem

a 1 2

t b Destination
) Cost 0

a destination t

Bellman’s equation

{ }

Optimal cost over the stable policies J+(1) = b

x c Cost 0 Cost

x c Cost = b > 0 Cost Optimal cost J∗(1) = 0

(1) = 0 J(1) = min
{
b, J(1)

}
, J(t) = 0

Set of solutions ≥ 0 of Bellman’s Eq. with J(t) = 0

J∗(1) = 0 (1) = 0 J+(1) = b JOptimal cost J(1)
= 0

0
Solutions of Bellman’s Eq.

The VI algorithm

It is attracted to J+ if started with J0(1) ≥ J+(1)
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Stochastic Shortest Path (SSP) Problems

Bellman’s Eq.: J(x) = infu∈U(x)

{
g(x , u) + E

{
J(f (x , u,w))

}}
, J(t) = 0

Finite-state SSP (A long history - many applications)
Analog of terminating policy is a proper policy: Leads to t with prob. 1 from all x

J+: Optimal cost over just the proper policies

Case J∗ = J+ (Bertsekas and Tsitsiklis, 1991): If each improper policy has∞ cost
from some x , J∗ solves uniquely Bellman’s Eq.; VI converges to J∗ from any J ≥ 0

Case J∗ 6= J+ (Bertsekas and Yu, 2016): J∗ and J+ are the smallest and largest
solutions of Bellman’s Eq.; VI converges to J+ from any J ≥ J+

Infinite-State SSP with g ≥ 0 and g: bounded (Bertsekas, 2017)
Definition: π is a proper policy if π reaches t in bounded E{Number of steps}
J+: Optimal cost over just the proper policies

J∗ and J+ are the smallest and largest solutions of Bellman’s Eq. within the class
of bounded functions

VI converges to J+ from any bounded J ≥ J+
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Generalizing the Analysis: Abstract DP

Abstraction in mathematics (according to Wikipedia)
“Abstraction in mathematics is the process of extracting the underlying essence of a
mathematical concept, removing any dependence on real world objects with which it
might originally have been connected, and generalizing it so that it has wider
applications or matching among other abstract descriptions of equivalent phenomena."

“The advantages of abstraction are:

It reveals deep connections between different areas of mathematics.

Known results in one area can suggest conjectures in a related area.

Techniques and methods from one area can be applied to prove results in a
related area."

ELIMINATE THE CLUTTER ... LET THE FUNDAMENTALS STAND OUT
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What is Fundamental in DP? Answer: The Bellman Eq. Operator

Define a general model in terms of an abstract mapping H(x ,u, J)
Bellman’s Eq. for optimal cost:

J(x) = inf
u∈U(x)

H(x , u, J)

For the deterministic optimal control problem

H(x , u, J) = g(x , u) + J
(
f (x , u)

)
Another example: Discounted and undiscounted stochastic optimal control

H(x , u, J) = g(x , u) + αE
{

J(f (x , u,w))
}
, α ∈ (0, 1]

Other examples: Minimax/games, semi-Markov, multiplicative/exponential cost, etc

Key premise: H is the “math signature" of the problem

Important structure of H: monotonicity (always true) and contraction (may be true)

Top down development:
Math Signature –> Analysis and Methods –> Special Cases
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Abstract DP Problem

State and control spaces: X ,U

Control constraint: u ∈ U(x)

Stationary policies: µ : X 7→ U, with µ(x) ∈ U(x) for all x

Monotone Mappings
Abstract monotone mapping H : X × U × E(X ) 7→ <

J ≤ J ′ =⇒ H(x , u, J) ≤ H(x , u, J ′), ∀ x , u

where E(X ) is the set of functions J : X 7→ [−∞,∞]

Define for each admissible control function of state µ

(TµJ)(x) = H
(
x , µ(x), J

)
, ∀ x ∈ X , J ∈ E(X )

and also define

(TJ)(x) = inf
u∈U(x)

H(x , u, J), ∀ x ∈ X , J ∈ E(X )
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Abstract Optimization Problem

Introduce an initial function J̄ ∈ E(X ) and the cost function of a policy
π = {µ0, µ1, . . .}:

Jπ(x) = lim sup
N→∞

(Tµ0 · · ·TµN J̄)(x), x ∈ X

Find J∗(x) = infπ Jπ(x) and an optimal π attaining the infimum

Notes

Deterministic optimal control interpretation: (Tµ0 · · ·TµN J̄)(x0) is the cost of
starting from x0, using π for N stages, and incurring terminal cost J̄(xN)

Theory revolves around fixed point properties of mappings Tµ and T :

Jµ = TµJµ, J∗ = TJ∗

These are generalized forms of Bellman’s equation

Algorithms are special cases of fixed point algorithms
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Principal Types of Abstract Models

Contractive:
Patterned after discounted optimal control w/ bounded cost per stage

The DP mappings Tµ are weighted sup-norm contractions (Denardo 1967)

Monotone Increasing/Decreasing:
Patterned after nonpositive and nonnegative cost DP problems

No reliance on contraction properties, just monotonicity of Tµ (Bertsekas 1977,
Bertsekas and Shreve 1978)

Semicontractive:
Patterned after control problems with a goal state/destination

Some policies µ are “well-behaved" (Tµ is contractive-like); others are not, but
focus is on optimization over just the “well-behaved" policies

Examples of “well-behaved" policies: Stable policies in det. optimal control; proper
policies in SSP
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The Line of Analysis of Semicontractive DP

Introduce a class of well-behaved policies (formally called regular)

Define a restricted optimization problem over just the regular policies

Show that the restricted problem has nice theoretical and algorithmic properties

Relate the restricted problem to the original

Under reasonable conditions: Obtain interesting theoretical and algorithmic results

Under favorable conditions: Obtain powerful analytical and algorithmic results
(comparable to those for contractive models)
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Regular Collections of Policy-State Pairs

Definition: For a set of functions S ⊂ E(X ) (the set of extended real-valued functions
on X ), we say that a collection C of policy-state pairs (π, x0) is S-regular if

Jπ(x) = lim sup
N→∞

(Tµ0 · · ·TµN J)(x), ∀ (π, x0) ∈ C, J ∈ S

Interpretation:

Changing the terminal cost function from J̄ to any J ∈ S does not matter in the
definition of Jπ(x0)

Optimal control example: Let S =
{

J ≥ 0 | J(t) = 0
}

The set of all (π, x) such that π is terminating starting from x is S-regular

Restricted optimal cost function with respect to C

J∗C(x) = inf
{π | (π,x)∈C}

Jπ(x), x ∈ X
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A Basic Theorem

J ′ J∗
C Ĵ ∈ S Limit Region Valid Start Region

For p = 1: Jp(1) = Jp(2) = 1 For p = 0: Jp(1) = Jp(5) = 2

For p = 1/2 (which is optimal): Jp(1) = 0, Jp(2) = 1, Jp(5) = 2

Jµ(1) = b, Jµ′(1) = 0

Optimal cost J∗(1) = min{b, 0} a 0 1 2 t b c u′, Cost 0 u, Cost b

Prob. p Prob. 1 − p Stationary policy costs Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u
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{
c, a + J(2)
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1
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1

Fixed Point of T VI Optimal Cost over C E(X)

1

Fixed Point of T VI: T kJ Optimal Cost over C E(X)

1

Jµ0 = (0, 0) Jµ0 = J* = (0, 0) Jµ = (b, 0) Jµ = J* = (b, 0)

J̃ 2 S

Prob. 1/2 Cost 0 J* = (b, 0) J* = (0, 0) J(1) J(t) Case P Case N

VI fails starting from J(1) 6= 0, J(t) = 0

VI fails starting from J(1) < J⇤(1), J(t) = 0

PI stops at µ PI oscilllates between µ and µ0

e1 = (1, 1) e2 = (1,�1) e3 = (�1,�1) e4 = (�1, 1)

X y 0

f?(y) =

⇢
� if y = ↵
1 if y 6= ↵

f??(x) = sup
y2<n

�
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f?(y) =

⇢
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244 Noncontractive Models Chap. 4

J ′

Limit Region Valid Start Region

Limit Region Valid Start Region

J J

VI Optimal Cost over CFixed Point of T

C E(X)

VI: T kJ

J̃ ∈ Sp ĴC

Figure 4.4.1. Schematic illustration of Prop. 4.4.1. Neither J∗
C nor J∗ need to

be fixed points of T , but if C is S-regular, and there exists J̃ ∈ S with J∗
C ≤ J̃ ,

then J∗
C demarcates from above the range of fixed points of T that lie below J̃ .

the set of S-regular stationary policies, i.e., C =
{
(µ, x) | µ ∈ MS , x ∈ X

}
;

see also Fig. 4.4.2.

Proposition 4.4.2: (Uniqueness of Fixed Point of T and Con-
vergence of VI) Given a set S ⊂ E(X), let C be a collection of
policy-state pairs (π, x) that is S-regular. Then:

(a) J*
C is the only possible fixed point of T within WS,C.

(b) If J*
C is a fixed point of T , then T kJ → J*

C for all J ∈ WS,C.

(c) If WS,C is unbounded above in the sense that

WS,C =
{
J ∈ E(X) | J*

C ≤ J
}
,

then J ′ ≤ J*
C for every fixed point J ′ of T . In particular, if J*

C is
a fixed point of T , then J*

C is the maximal fixed point of T .

Proof: (a) Let J ′ be a fixed point of T such that J ′ ∈ WS,C. Then from
the definition of WS,C, we have J*

C ≤ J ′, while by Prop. 4.4.2(b), we also
have J ′ ≤ J*

C . Hence J ′ = J*
C .

(b) Let J ∈ E(X) and J̃ ∈ S be such that J*
C ≤ J ≤ J̃ . Using the fixed

point property of J*
C and the monotonicity of T , we have

J*
C = T kJ*

C ≤ T kJ ≤ T kJ̃ , k = 0, 1, . . . .

From Prop. 4.4.1(b), with J ′ = J*
C , it follows that T kJ̃ → J*

C , so taking
limit in the above relation as k → ∞, we obtain T kJ → J*

C .

(c) See the discussion preceding the proposition. Q.E.D.
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C 0

Paths of VI Unique solution of Bellman’s equation ĴC 0

VI converges from Wp ĴC J∗ Ĵ+ W∗

WS,C =
{
J ∈ E(X) | ĴC ≤ J ≤ J̃ for some J̃ ∈ S

}

J(1) = min
{
exp(b), exp(a)J(2)

}

J(2) = exp(a)J(1)

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T

y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − ϵ µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗
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aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

1

Well-behaved region

Let C be a collection of policy-state pairs (π, x) that is S-regular. The well-behaved
region is the set

WS,C =
{

J | J∗C ≤ J ≤ J̃ for some J̃ ∈ S
}

Key result: The limits of VI starting from WS,C lie below J∗C and above all fixed
points of T

J ′ ≤ lim inf
k→∞

T k J ≤ lim sup
k→∞

T k J ≤ J∗C , ∀ J ∈ WS,C and fixed points J ′ of T
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Visualization when J∗C is not a Fixed Point of T and S = E(X )

Path of VI Set of solutions of Bellman’s equation J*
C

Paths of VI Unique solution of Bellman’s equation

Limit Region

Fixed Points of T

T S = E(X)

Well-Behaved Region

WS,C =
{
J | J*

C ≤ J
}

VI behavior: Well-behaved region {J | J ≥ J∗C} –> Limit region {J | J ≤ J∗C}
All fixed points J ′ of T lie below J∗C
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Visualization when J∗C is a Fixed Point of T and S ⊂ E(X )
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J̃ ∈ Sp ĴC

Figure 4.4.1. Illustration of Prop. 4.4.1. Neither ĴC nor J∗ need to be fixed
points of T , but if C is S-regular, and there exists J̃ ∈ S with ĴC ≤ J̃ , then ĴC
demarcates from above the range of fixed points of T that lie below J̃ .

Proof: It is sufficient to prove part (b), since (a) is implied by (b). Let
J ∈ E(X) and J̃ ∈ S be such that ĴC ≤ J ≤ J̃ . Using the fixed point
property of ĴC and the monotonicity of T , we have

ĴC = T kĴC ≤ T kJ ≤ T kJ̃ , k = 0, 1, . . . .

From Prop. 4.4.1(b), with J ′ = ĴC , it follows that T kJ̃ → ĴC , so taking
limit in the above relation as k → ∞, we obtain T kJ → ĴC . Q.E.D.

Examples and counterexamples illustrating the preceding proposition
are provided by the problems of Section 3.1 for the stationary case where
C =

{
(µ, x) | µ ∈ MS, x ∈ X

}
. Similar to the analysis of Chapter 3, the

preceding proposition takes special significance when C is rich enough so
that ĴC = J*, as for example in the case where C is the set Π × X of all
(π, x), or other choices to be discussed later. It then follows that every fixed
point J ′ of T that belongs to S satisfies J ′ ≤ J*, and that VI converges to
J* starting from any J ∈ E(X) such that J* ≤ J ≤ J̃ for some J̃ ∈ S.

Note that Prop. 4.4.2 does not say anything about fixed points of T
that lie below ĴC , and does not give conditions under which ĴC is a fixed
point. In particular, it does not address the question whether J* is a fixed
point of T , or whether VI converges to J* starting from J̄ or from below J*.
Generally, it can happen that both, only one, or none of the two functions
ĴC and J* is a fixed point of T , as seen in the examples of Section 3.1.

The Case Where ĴC ≤ J̄

We have seen in Section 4.3 that the results for monotone increasing and
monotone decreasing models are markedly different. In the context of S-
regularity of a collection C, it turns out that there are analogous significant
differences between the cases ĴC ≥ J̄ and ĴC ≤ J̄ . The following proposition
establishes some favorable aspects of the condition ĴC ≤ J̄ in the context
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VI converges from Wp ĴC J∗ Ĵ+ W∗
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rx(z) = −(ĉlφ)(x, z)

rx(µ) − ϵ µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

1

Valid Start Region

WS,C =
{
J | J*

C ≤ J ≤ J̃ for some J̃ ∈ S
}

Fixed Points of T S = E(X) Limit Region

Paths of VI Under Compactness

Path of VI Set of solutions of Bellman’s equation J*
C 0

Paths of VI Unique solution of Bellman’s equation ĴC 0

VI converges from Wp ĴC J∗ Ĵ+ W∗
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If J ′ is a fixed point of T with J ′ ≤ J̃ for some J̃ ∈ S, then J ′ ≤ J∗C
If WS,C is unbounded above [e.g., if S = E(X )], J∗C is a maximal fixed point of T

VI converges to J∗C starting from any J ∈ WS,C

Bertsekas (M.I.T.) Abstract and Semicontractive DP: Stable Optimal Control 28 / 32



Application to Deterministic Optimal Control

Let
S = {J | J ≥ 0, J(0) = 0}

Consider collection

C =
{

(π, x) | π terminates starting from x
}

Then:

C is S-regular (since the terminal cost function J̄ does not matter for terminating
policies)
General theory yields:

I J∗ and J∗C = J+ are the smallest and largest solution of Bellman’s Eq.
I VI converges to J+ converges to J+ starting from J ≥ J+

I Etc

Refinements relating to p-stability
Consider collection

C =
{

(π, x) | π is p-stable from x
}

C is S-regular for S equal to the set of “Lyapounov functions" of the p-stable policies:

S =
{

J | J(t) = 0, J(xk )→ 0, ∀ (π, x0) s.t. π is p-stable from x0
}
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Similar Applications to Various Types of DP Problems

Abstract and semicontractive analyses apply
To discounted and undiscounted stochastic optimal control

H(x , u, J) = E
{

g(x , u,w) + αJ
(
f (x , u,w)

)}
, J̄(x) ≡ 0

To minimax problems (also zero sum games); e.g.,

H(x , u, J) = sup
w∈W

{
g(x , u,w) + αJ

(
f (x , u,w)

)}
, J̄(x) ≡ 0

To robust shortest path planning (minimax with a termination state)

To multiplicative and exponential/risk-sensitive cost functions

H(x , u, J) = E
{

g(x , u,w)J
(
f (x , u,w)

)}
, J̄(x) ≡ 1

or
H(x , u, J) = E

{
eg(x,u,w)J

(
f (x , u,w)

)}
, J̄(x) ≡ 1

More ... see the references
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Concluding Remarks

Highlights of results for optimal control
Connection of stability and optimality through forcing functions, perturbed
optimization, and p-stable policies

Connection of solutions of Bellman’s Eq., p-Lyapounov functions, and p-regions of
convergence of VI

VI and PI algorithms for computing the restricted optimum (over p-stable policies)

Highlights of abstract and semicontractive analysis
Streamlining the theory through abstraction

S-regularity is fundamental in semicontractive models

Restricted optimization over the S-regular policy-state pairs

Localization of the solutions of Bellman’s equation

Localization of the limits of VI and PI

“Favorable" and “not so favorable" cases

Broad range of applications
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Thank you!
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