Human-Robot Physical Interaction for Neuromuscular Adaptive Robot Co-workers

Jun Ueda

Associate Professor and Woodruff Faculty Fellow

G.W.W. School of Mechanical Engineering Adjunct Faculty, School of Biological Sciences Institute of Robotics and Intelligent Machines jun.ueda@me.gatech.edu

NATIONAL ROBOTICS INITIATIVE (NRI)

CMU, June 24th, 2011

Georgia Tech

CLINICAL NEED: HEMIPARESIS

- A paralysis of one side of the body widely observed in stroke survivors
- 600,000 individuals suffer strokes each year in the U.S.
- Restricts activities of daily living (ADLs)
- Neural plasticity
- Physical therapy is an intensive process
- Unsatisfactory outcomes performed by unskilled therapists
- Scientific evaluation needed (e.g., fMRI)

INDUSTRIAL NEED: WORKER SAFETY

- Industry still largely relies on manual assembly by human workers (e.g., automobile, aerospace, construction...)
- Force assistance
- Work-related musculoskeletal disorders (WMSDs)
 e.g., Back injuries
- Situational awareness
- Skill training & assessment

Motor control (Applied Physiology)

Wheelchair evaluation

Exoskeleton

Sensorimotor function enhancement

Paired associative stimulation for stroke rehabilitation

Robotic assembly and error detection

Robotic eye

Motion control

Deployable arm

High-speed servoing

Teleoperation

Force-assisting system

Motor control (Applied Physiology)

Motion control

IS REHABILITATION ROBOTICS EFFECTIVE? Georgia

Conclusions. For subacute stroke participants with moderate to severe gait impairments, the diversity of **conventional gait training interventions appears to be more effective than robotic-assisted gait training** for facilitating returns in walking ability.

Neurorehabil Neural Repair January 2009 vol. 23 no. 1 5-13

Multicenter Randomized Clinical Trial Evaluating the Effectiveness of the Lokomat in Subacute Stroke

Neurore habilitation and Neural Repair Volume 23 Number 1 January 2009 5-13 © 2009 The American Society of Neurorehabilitation 10.1177/1545968308326632 http://nnt.segepub.com Dosted at http://online.sagepub.com

Joseph Hidler, PhD, Diane Nichols, PT, Marlena Pelliccio, PT, Kathy Brady, MSPT, Donielle D. Campbell, PT, Jennifer H. Kahn, PT, and T. George Hornby, PhD, PT

Objective. To compare the efficacy of robotic-assisted gait training with the Lokomat to conventional gait training in individuals with subacute stroke. *Methods.* A total of 63 participants <6 months poststroke with an initial walking speed between 0.1 to 0.6 m/s completed the multicenter, randomized clinical trial. All participants received twenty-four 1-hour sessions of either Lokomat or conventional gait training. Outcome measures were evaluated prior to training, after 12 and 24 sessions, and at a 3-month follow-up exam. Self-selected overground walking speed and distance walked in 6 minutes were the primary outcome measures, whereas secondary outcome measures included balance, mobility and function, cadence and symmetry, level of disability, and quality of life measures. *Results.* Participants who received conventional gait training experienced significantly greater gains in walking speed (P = .002) and distance (P = .03) than those trained on the Lokomat. These differences were maintained at the 3-month follow-up evaluation. Secondary measures were not different between the 2 groups, although a 2-fold greater improvement in cadence was beserved in the conventional gait training interventions appears to be more effective than robotic-assisted gait training for facilitating returns in walking ablity.

Keywords: Hemiplegia; Rehabilitation; Gait; Recovery of function; Robotics; Walking

B ody-weight supported locomotor training on a treadmill (BWSTT) has been the focus of intense investigations for nearly 20 years, beginning with the seminal work of Barbeau and colleagues.¹² Hesse et al³ first evaluated this training modality in stroke populations, where it was demonstrated in a small group of subacute stroke participants that improvements in walking ability were greater following BWSTT than conventional physiotherapy. One uncertainty of this early work was whether the catalyst for improvements in walking ability resulted from the volume of steps practiced on the treadmill or the incorporation of body-weight support during training sessions. Visintin et al⁴ investigated this by training 100 stroke participants on a treadmill, but only half received body-weight support. They found that the participants who received BWSTT demonstrated significantly greater gains in walking ability over those who received example, Sullivan et al⁶ and Pohl et al⁷ each evaluated the influence of training speeds on gait outcomes. Both of these studies found that participants trained at high speeds tend to show greater improvements in walking ability than those trained at slower rates. These and other studies using BWSTT in individuals poststroke demonstrate the effectiveness of the therapeutic paradigm, and have identified training factors that regulate intensity, which can directly impact the intervention outcomes.⁸

One of the recognized limitations with BWSTT is the significant demand it places on the therapists during training sessions. Specifically, manually assisting individuals with spastic hemiparesis at the impaired limb and/or trunk to facilitate continuous stepping may present significant physical challenges to skilled therapists. As a result, the consistency and duration of the training may be compromised. For

PAS: PAIRED ASSOCIATIVE STIMULATION Georgia

Transcranial magnetic stimulation (TMS) & <u>Electrical</u> peripheral stimulation

Pre PAS Post Α 1.9 PAS, duration of stimulation (min) MEP amplitude vs baseline 1.7 1.5 В 1.3 1.1 0.9 0

- Long-term potentiation (LTP) can be induced by PAS with electrical stimuli
- Observed increased motor excitability in the paretic lower limb of chronic stroke patients when walking*
- PAS may be used as an adjuvant therapy for stroke patients*

Nitsche MA, *et al*, Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. *J Neurosci* 2007

*Jayaram, G, *et al.* Contralesional paired associative stimulation increases paretic lower limb motor excitability post-stroke. *Experimental Brain Research*, 2008

8

CLINICAL PRACTICE: REPETITIVE FACILITATION EXERCISE (RFE)

- Induces stretch reflexes by tendon tapping
- Promising clinical results

Dr. Kawahira, MD, Kagoshima University, Japan

Repetitive Facilitation Exercise

Kawahira K, *et al. Journal of Rehabilitation Medicine* 36: 159-64, 2004 Kawahira K, *et al. International Journal of Rehabilitation Research*, 2009 Kawahira K, *et al. Brain Injury* 24: 1202-13, 2010

NEUROMODULATION- PAS-INDUCED LTP

10

ROBOTIC PAS FOR CORTICAL FACILITATION WITH AFFERENT STIMULATION

Georgia Tech

ROBOTICALLY PERFORMED PAS

 Successful synchronization between TMS and hammer hit across 40-60ms time frame

Georgia

Tech

Response more *dispersed* in time due to the desynchronized activation of muscle spindles

MECHANICAL VS ELECTRICAL STIMULATION Georgia Tech

Euisun Kim, Ilya Kovalenko, Minoru Shinohara and Jun Ueda, Optimal Inter-stimulus Interval for Paired Associative Stimulation with Mechanical Stimulation, *Neural Plasticity*, under review.

IS PNEUMATIC ACTUATION INACCURATE?

Required performance characteristics is NOT fast speed of response, BUT small variability in impact application

Observations:

Pure time delay is not significant (even for a 7.5m line) Pressure attenuation is significant, but predictable Hammer motion is highly repeatable (SD < 5ms)

TIMING ANALYSIS

						13 mg. 1	Iecn M.
			Drour	motio		NUMS IN	
Pressure Sensor				ler EMG Amplifier		EMG Electrodes	
Ham For Ser	mer ce nsor		Acceler	ometer Human <mark>.</mark> wrist			Robotic Rehab Device
	De	evice only			<u>VV</u>	ith subject	
	unit: ms		Top Chamber Fills Up	Hammer Starts to Extend	Hammer Hits Hand	Hammer Bounces Back to Hand	EMG Picks Up Mech. Stimulus
	Force Sensor (50 Observations)	Average	523	621	688	690	N/A
		Standard Dev	0	2	1	1	N/A
		Range	[523, 523]	[617, 626]	[686, 690]	[689, 692]	N/A
	Subject 1 (538 Observations)	Average	523	631	683	698	701
		Standard Dev	0	5	4	4	4
		Range	[523, 523]	[613, 640]	[669, 688]	[688, 704]	[689, 712]
	Subject 2 (324 Observations)	Average	523	626	672	681	695
		Standard Dev	0	4	2	2	2
	(327 05381 Valions)	Range	[523, 523]	[614, 650]	[666, 678]	[673, 688]	[689, 703]
	Subject 2	Average	523	615	676	693	695
	(252 Observations)	Standard Dev	0	2	1	1	1
		Range	[523, 523]	[609, 625]	[674, 679]	[691, 696]	[692, 699]

Euisun Kim, Ilya Kovalenko, Lauren Lacey, Minoru Shinohara, Jun Ueda, "Timing Analysis of Robotic Neuromodulatory Rehabilitation System for Paired Associative Stimulation", *IEEE Robotics and Automation Letters* (RA-L), Vol 1, Issue 2, pp: 1028–1035, February, 2016

Georgia

PRESSURE CONTROL CHALLENGES

Solution: Closed-form 3-champer model and back-stepping control

Melih Turkseven and Jun Ueda, An Asymptotically Stable Pressure Observer Based on Load and Displacement Sensing for Pneumatic Actuators with Long Transmission Lines, *IEEE /ASME Transactions on Mechatronics, 2017*

LINE DYNAMICS

PRESSURE ESTIMATION(CONCEPT)

OBSERVER DYNAMICS

- Developed observer minimizes the error in the estimated actuator $\langle \rangle \langle \rho u \rangle$ force
- Both force and displacement measurements are utilized

Isothermal chamber model, has been shown to be stable with regard to pressure estimation errors*: $\dot{m}_i(P_i) < 0$ if $A_{v_i} < 0$ (de-pressurization) $\widetilde{\dot{m}_i}(\widetilde{P_i}) \leq 0$ if $A_{\!_{\!V_i}}>0$ (pressurization)

*Gulati and Barth "A Globally Stable, Nonlinear Pressure Observer for Pneumatic Actuators with Servo Valves", ,2009

$$\dot{m}_i RT = P_i \dot{V}_i + \dot{P}_i V_i$$

Georgia

Tec

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} P_1 v_1 \\ P_2 V_2 \end{pmatrix}$$
$$\begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix} = \begin{pmatrix} \hat{m}_1 RT \\ \hat{m}_2 RT \end{pmatrix} + \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$$

$$F_p = F_e + M \dot{x} + B \dot{x}$$

$$f_{1} = -\frac{1}{V_{1}A_{2}}(\hat{P}_{1}A_{1} - \hat{P}_{2}A_{2} - F_{p})$$

$$f_{2} = -\frac{1}{V_{1}A_{2}}(\hat{P}_{1}A_{1} - \hat{P}_{2}A_{2} - F_{p})$$

 $V_{2}A_{1}$

OBSERVER BASED (SIMPLE FEEDBACK) CONTROL

"BACK-STEPPING" CONTROL STRUCTURE Georgia

Melih Turkseven and Jun Ueda, Model Based Force Control of Pneumatic Actuators with Long Transmission Lines, *IEEE /ASME Transactions on Mechatronics, Conditionally accepted*

- Limited degradation in the performance as the frequency rise
- Improvement is marginal when the line length and the actuation frequency is low

R

$$F_{V_d} = F_P + \frac{\lambda_1 e_1 + F_{e_d} + G_1}{\overline{h}} + k_1 s_1$$

Georgia

Tech

MSE in Force (N^2) 0.5 Hz 1 Hz 2 Hz 7.25 7.25 7.25 Line Length (2m -- 5m -- 7.25m -- 10m)

Conventional

DISPERSION IN SENSORY SYSTEM OR MOTOR SYSTEM?

Preliminary results (single subject, 125 trials) Delayed and widened P25 peak Mechanical stimulation to FCR muscle

P25

Wolters et al. (J. Physiology, 2005) Single subject, 1000 trials Electrical stimulation of the median nerve

Mechanical Stimulation (tendon tapping)

Georgia Tech

PAS-INDUCED LTP

- LTP induced by mechanical (robotic) stimulation
- An example for potentiated MEP in a wrist flexor after PAS with mechanical stimuli compared with Pre in one subject.

RESPONSE TIME IS DIFFERENT FROM PERSON TO PERSON

Timing difference between mechanical stimulation command and TMS(ms)

* Numbers(0~10) represent the number of long latency response out of 10 trials.

Large individual differences \rightarrow Machine learning

Georgia Tech

BAYESIAN ESTIMATION OF NEUROMODULATION

How to find the "optimal" interstimulus interval in dividable subjects

BAYESIAN ESTIMATION RESULTS

 Acquisition function : Upper Confidence bound selection criterion

$$GP - UCB(x) = m(x) + \kappa * \sigma(x)$$

- Kernel Function : Squared exponential kernel $k(x, x') = e^{-\frac{1}{2}(x-x')^2}$
- Cost Function

(

 $cost = \sum \frac{(estimated time window - true time window)^2}{200}$

4th Iteration

IOT MEDICAL HAMMER

Data Scope	Correct	Correct	Correct, NS	Correct Location,
		Location		NS
A Only	95.1%	85.4%	96.5%	90.97%
B Only	91.7%	72.9%	91.6%	73.61%
Both	86.4%	75.7%	86.11%	73.96%

Meinhold and Ueda, An Instrumented Medical Hammer with Diagnostic, Therapeutic and Pedagogical Applications, ASME DSCC 2017

ROBOT-ASSISTED BIMANUAL TASKS

0:21 / 1:46

Human modes in robot-assisted assembly

Factory GM Flint Assembly

VARIABILITY IN HUMAN STIFFNESS

Muscle stiffness: stochastic parameter in the system

Georgia Tech

Pluckter, Moualeu, Ueda, IEEE Transactions on Robotics, 2017, submitted

VARIABILITY IN HUMAN STIFFNESS (CONT.)

Muscle stiffness

- Greater co-contraction in oscillatory environment
- Adaptation

MODELING OF MUSCLE COCONTRATION Georgia

Antonio Moualeu ME, PhD

the distribution is not normal (p < 0.001).

PROPOSED STOCHASTIC CONTROLLER

- SVM based stiffness classifier ۲
- Switching impedance control for force assisting
- Stochastic LQR

Georgia

Tech

Fundamental problem of assistive robotics based on "human effort" <u>measurement</u>

Excessive chatter between states

OSCILLATION IN HUMAN-ROBOT "HYBRID" SYSTEM Georgia Tech

INTENTION ESTIMATION FROM GAZE AND CO-Georgia Tech CONTRACTION

Layered Hidden Markov Model

- Properties:
 - Modular
 - Quick to Train ٠
 - Use of Markov Assumptions

- sEMG: measurements of electrical signals from muscles
- Useful for endpoint stiffness estimation

Bicep Brachii (BB) muscle

Triceps Brachii (TB) muscle

(FCU) muscle Cocontraction Muscle Groups [2]

LHMM SETTINGS

- Best feature sets included 3-d.o.f. force readings and EMG data
- Worst feature sets were missing 3d.o.f. force readings or included extra EMG features
- Minimal performance difference across number of nodes

Feature Set vs. Number of Nodes vs. Error Rate

- Prediction Layer Performance over time vs. number of nodes
- Performance Ranking switch for 3 and 4 nodes at 50 ms

INTENTION ESTIMATION RESULTS

- Novel haptic device operator intent prediction algorithm
 - Better classification performance than many other algorithms Classification Ranking for Performance of LHMM vs. Other Learning Algorithms

Rank	Method	Features	Error	Precision	Recall	F1
1	LHMM	FS #10	0.159	0.762	0.780	0.735
10	DT	E (10-PC)	0.229	0.686	0.687	0.685
11	NB	FS #13	0.242	0.681	0.654	0.659
15	QDA	FS #9	0.275	0.660	0.623	0.621
29	SVM	FS #9	0.332	0.611	0.518	0.453
39	LDA	FS #9	0.347	0.522	0.512	0.484
50	KNN	FS #23	0.363	0.532	0.536	0.532

- Full system accuracy up to 82% with 50 ms window

Georgia

CO-CONTRACTION TRAINING

Ahmar NE, Shinohara M. Slow intermuscular oscillations are associated with cocontraction steadiness. Medicine & Science in Sports & Exercise, 2017

DEXTEROUS TELEOPERATION FOR DISASTER RELIEF (DOD-MOTIE)

Hybrid Site Sensing and Human-multi-robot Team Collaboration for Disaster Relief at Nuclear Power Plants

Shared-control of a multi-DOF dexterous hand-arm system with adaptive gain scheduling GT Ueda

Dexterous hand manipulation and integrated hand-arm system

Assessment of the impact of the operational system with respect to task performance and cognitive burden

HYU Han

Remotely controlling multiple unmanned excavator robots

UNMANNED EXCAVATOR

Unmanned Relief/Restoration Robot using Promptly Renovated Excavator

- Retrofit unmanned tele-operation robot into commercial excavator
- Control strategy for the unmanned relief/restoration robot

Configuration of unmanned relief/restoration robot

Installation type robotic manipulator for the unmanned excavator

ADAPTIVE GAIN SCHEDULING FOR ROBUST TELE-OPERATION (UEDA-GT)

Operator as a stochastic system (muscle contraction, cognitive mode...)

Georgia Tech

SHARED CONTROL FOR SCALED HAND-ARM TELE-OPERATION

Hand-arm system

Georgia Tech

JETPACK

Georgia Research Tech ∐Institute

Problem. Solved.

Michael Mayo, GTRI @ Jetpack Aviation

BODY PROTECTIVE EXOSKELETON

Muscle activity (EMG) measurement

Georgia Tech

Vertical Impact Magnitudes (kg m/s)

Dynamic falling simulation 46

How to protect lower limb

Muscle and tendon injuries

Bone and cartilage injuries

Series and parallel connection of mechanical shock absorbers

Georgia Tech

CLASSIFICATION OF EXOSKELETON FUNCTIONS Georgia

Reciprocal screw theory

Condition 1: *Protection of bones and joints*: External shock forces must be in the constrained motion space of the exoskeleton structure (i.e., reciprocal wrenches) and must be in the admissible motion space of the human skeleton (i.e., non-reciprocal wrenches), ideally orthogonal to each other

Condition 2: *Protection of muscles*: Equivalent joint efforts of external shock forces and viscoelastic forces from shock absorption elements must be non-orthogonal in the joint space, ideally parallel to each other

Condition 3: Impact and shock reduction to the entire system:

External shock forces and equivalent viscoelastic forces from shock absorption elements must be non-orthogonal in the task space.

Condition 4: *Force augmentation*: Equivalent wrenches of muscle forces and robot actuation efforts must be non-orthogonal to each other in the task space, ideally parallel to each other, and must not be in the constrained motion space of either of the systems.

WEARABLE ROBOT FOR CONSTRUCTION Georgia WORKER SAFETY

- **Goal:** Assisting masonry workers to enhance the safety through the integration of automated activity & posture analysis and exoskeleton technology.
- **Specific Objectives**: To develop a smart robotic exoskeleton which provides workers:
 - Physical constraints to decrease the risk of back injuries 1)
 - Strength assistance as long as the posture is in the safe range. 2)

Tech

PROPOSED PNEUMATIC EXOSKELETON SYSTEM Georgia

CDC/NIOSH....

https://blogs.cdc.gov/niosh-science-blog/2016/03/04/exoskeletons/

CDC Centers for Disease Control and Prevention CDC 24/7: Saving Lives, Protecting People™

2	F .	Δ		\sim		
,			17	6		

q

risks before widespread workplace adoption. Some questions to address include, but are not limited to:

- Do some devices create a transference of load between musculoskeletal regions that still puts the worker at risk? For example, a vest or hip-supported device may transfer load off the arms and shoulders, but the increase in total load transferred to the spine and lower extremities may also have long term effects.
- Does the added weight of some devices increase energy expenditure/metabolic work load? Do some devices affect user comfort?
- Do some devices affect the balance of the wearer by changing their center of mass or increasing rate of fatigue in the lower extremity muscles? As reported by de Looze et al. (2015) increases in leg muscle activity have been reported for some devices (e.g. Barret and Fathallah, 2001; Ulrey and Fathallah, 2013); this may occur because the "external forces applied by the [exoskeleton] equipment needs to be counteracted to retain balance...". Can this increase in leg muscle activity contribute to lower extremity fatigue and increased risk for loss of balance? Correspondingly, are fall risks increased because of this possible leg fatigue and loss of balance?

EXOSKELETON FOR CONSTRUCTION SAFETY

Applied physiology (motor control)

ion

Motion control

High-speed servoing

QUESTIONS?

<u>Collaborators</u> Dr. Robert Webster, Vanderbilt Dr. Yuichi Kurita, Hiroshima U. Dr. Kawahira, Kagoshima U Dr. Dalong Gao, GM Dr. Karen Feigh, GT AE Dr. Minoru Shinohara, GT AP Dr. Yong Cho. GT CE Dr. Shinichi Izumi, Tohoku University

Graduate students and Alumni Joshua Schultz, Assistant Professor, U. Tulsa David MacNair, Academic Professional. GT Billy Gallagher, NASA Goddard Center Melih Turkseven, Postdoc, RPI Michael Kim. Sandia National Labs. Tim McPherson, Mathworks Greg Henderson, US Army Lauren Lacey, Sandia National Labs. Efrain Teran, Assistant Professor, ESPL, Ecuador Ellenor Brown, AP Antonio Moualeu, ME Rohan Katoch, Robotics Ilya Kovalenko, ME Euisun Kim, ME Waiman Meinhold, Robotics