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CLINICAL NEED: HEMIPARESIS

A paralysis of one side of the body widely
observed in stroke survivors

600,000 individuals suffer strokes each year in
the U.S.

Restricts activities of daily living (ADLs)

Neural plasticity
Physical therapy is an intensive process

Unsatisfactory outcomes performed by
unskilled therapists

Scientific evaluation needed (e.g., fMRI)




INDUSTRIAL NEED: WORKER SAFETY Gegroia &

Industry still largely relies on manual
assembly by human workers (e.g.,
automobile, aerospace, construction...)

Force assistance

Work-related musculoskeletal disorders
(WMSDs)
e.g., Back injuries

Situational awareness
Skill training & assessment
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IS REHABILITATION ROBOTICS EFFECTIVE? Gegrgia |

®

Conclusions. For subacute stroke participants with moderate to severe gait impairments, the
diversity of conventional gait training interventions appears to be more effective than
robotic-assisted gait training for facilitating returns in walking ability.
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Multicenter Randomized Clinical Trial Evaluating
the Effectiveness of the Lokomat in Subacute Stroke

Joseph Hidler, PhD, Diane Nichols, PT, Marlena Pelliccio, PT, Kathy Brady, MSPT,
Donielle D. Campbell, PT, Jennifer H. Kahn, PT, and T. George Hormnby, PhD, PT

Objective. To compare the efficacy of robotic-assisted gait training with the Lokomat to conventional gait training in individuals with
subacute stroke. Methods. A total of 63 participants <6 months poststroke with an initial walking speed between 0.1 to 0.6 m/s completed
the multicenter. randomized clinical trial. All participants received twenty-four 1-hour sessions of either Lokomat or conventional gait
training. Outcome measures were evaluated prior to training, after 12 and 24 sessions. and at a 3-month follow-up exam. Sel f-selected
overground walking speed and distance walked in 6 minutes were the primary outcome measures, whereas secondary outcome measures
included balance, mobility and function, cadence and symmetry, level of disability, and quality of life measures. Results. Participants who
received conventional gait training experienced significantly greater gains in walking speed (P = 002) and distance (P = .03) than those
trained on the Lokomat. These di fferences were maintained at the 3-month follow-up evaluation. Secondary measures were not different
between the 2 groups. although a 2-fold greater improvement in cadence was observed in the conventional versus Lokomat group.
Conclusions. For subacute stroke participants with moderate to severe gait impairments, the diversity of conventional gait training inter-
ventions appears to be more effective than robotic-assisted gait training for facilitating returns in walking ability.

Keywords: Hemiplegia: Rehabilitation: Gait: Recovery of function: Robotics: Walking

ody-weight supported locomotor training on a treadmill

(BWSTT) has been the focus of intense investigations
for nearly 20 years, beginning with the seminal work of
Barbeau and colleagues.'? Hesse et al® first evaluated this
training modality in stroke populations, where it was demon-
strated in a small group of subacute stroke participants that
improvements in walking ability were greater following
BWSTT than conventional physiotherapy. One uncertainty of
this early work was whether the catalyst for improvements in
walking ability resulted from the volume of steps practiced
on the treadmill or the incorporation of body-weight support
during training sessions. Visintin et al* investigated this by
training 100 stroke participants on a treadmill, but only half
received body-weight support. They found that the partici-
pants who received BWSTT demonstrated significantly
greater gains in walking ability over those who received

example, Sullivan et al® and Pohl et al’ each evaluated the
influence of training speeds on gait outcomes. Both of these
studies found that participants trained at high speeds tend to
show greater improvements in walking ability than those
trained at slower rates. These and other studies using BWSTT
in individuals poststroke demonstrate the effectiveness of the
therapeutic paradigm. and have identified training factors that
regulate intensity, which can directly impact the intervention
outcomes.*

One of the recognized limitations with BWSTT is the
significant demand it places on the therapists during training
sessions. Specifically, manually assisting individuals with
spastic hemiparesis at the impaired limb and/or trunk to
facilitate continuous stepping may present significant physi-
cal challenges to skilled therapists. As a result, the consis-
tency and duration of the training may be compromised. For



PAS: PAIRED ASSOCIATIVE STIMULATION Gegrgia|

Transcranial magnetic stimulation (TMS)

&

Electrical peripheral stimulation
Pre PAS Post

Long-term potentiation (LTP)
can be induced by PAS with
electrical stimuli

A .
Observed increased motor
excitability in the paretic
T PAS, duratn ofstmulten (mi) lower limb of chronic stroke
317 o patients when walking*
8 f— 30
> 151 PAS may be used as an
B S s adjuvant therapy for stroke
L] . *
G 1 patients
09+

0 5 10 15 20 25 30 60 90

Time course (min)
A: Cartoons for explaining the experimental procedure.
B: Potentiated motor evoked potential (MEP) after PAS (Post) of different
durations, compared with Pre
*Jayaram, G, ef al. Contralesional paired associative stimulation
Nitsche MA, et a/, Timing-dependent modulation of associative plasticity by general increases paretic lower limb motor excitability post-stroke.
network excitability in the human motor cortex. J Neurosci 2007 Experimental Brain Research, 2008



CLINICAL PRACTICE: REPETITIVE FACILITATION EXERCISE (RFE) Ge?{_}%ﬁ&

* Induces stretch reflexes by tendon tapping
®* Promising clinical results

o~

Dr. Kawahira, MD, Kagoshima
University, Japan

it

*
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222

6 8 (Weeks) . - 1 _' _i :
| Repetitive Facilitation Exercise

Kawahira K, et al. Journal of Rehabilitation Medicine 36: 159-64, 2004
Kawahira K, et al. International Journal of Rehabilitation Research , 2009
Kawabhira K, et al. Brain Injury 24: 1202-13, 2010



NEUROMODULATION- PAS-INDUCED LTP Georgna&
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Repetitive Facilitation Exercise

Physiology research Clinical practice (Manual therapy)
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ROBOTIC PAS FOR CORTICAL FACILITATION WITH Georgia &
AFFERENT STIMULATION Tech|)

Georgia
Tech

Tendon Tapping « Final Position
(Duration : 0.5s) 2\



ROBOTICALLY PERFORMED PAS
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Successful synchronization between TMS and hammer hit across 40-60ms

time frame

Response more dispersed in time due to the desynchronized activation of

muscle spindles

Mechanical Only

0.1

Mechanical impact @

40-60ms

mvV

EMG(mV)
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MECHANICAL VS ELECTRICAL STIMULATION &€

orgia
Tegch

Dispersion in
muscle spindle firing
Electrical stimulation Mechanical stimulation
10
gl hied’\_aﬂ-ca.l N
Electincal
8 .
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s ¢ i
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Oo 5l0 4 1(30 150 200 250 300

Time between TMS and mechanicallelectrical stimulation[ms]

Euisun Kim, Ilya Kovalenko, Minoru Shinohara and Jun Ueda, Optimal Inter-stimulus Interval for Paired Associative
Stimulation with Mechanical Stimulation, Neural Plasticity, under review.

b
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Georgi
'S PNEUMATIC ACTUATION INACCURATERZRL

Required performance characteristics is NOT fast speed
of response, BUT small variability in impact application

Long latency reflex

Mechanical >=7m
Response Stimulus
\ —
\

]
/ / Air valves

e

fMRI Control Room

u

AAA

/4
Voluntary Nerve l

Impulse

fMRI Laboratory

Observations:

Pure time delay is not significant (even for a 7.5m line)
Pressure attenuation is significant, but predictable
Hammer motion is highly repeatable (SD < 5ms)
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TIMING ANALYSIS

®

Pneumatic EMG
Pressure Cylinder EMG Electrodes
Sensor Amplifier
Hammer Robotic
Rehab
Accelerometer Hu_man Device
wrist
Force
Sensor
Device only With subject
un |t ms Top Chamber Fills Up Hammer Starts to Extend Hammer Hits Hand HaBn;::r:(etl;B:::;es sa Psitcil:::lr:sMech.
Average 523 621 688 690 N/A
(50 Obsorumtions)  Standard Dev 0 2 1 ) N/A
Range [523, 523] [617, 626] [686, 690] [689, 692] N/A
. Average 523 631 683 698 701
(538 (S)l::fSaiions) SENCLIAUCY i 5 4 4 4
Range [523, 523] [613, 640] (669, 688] (688, 704] (689, 712]
. Average 523 626 672 681 695
(324 z)l:)ifrc\;‘aiions) SLECEIT [BEY il 4 2 2 2
Range [523, 523] [614, 650] (666, 678] [673, 688] (689, 703]
i Average 523 615 676 693 695
(252 f)‘:al;{:rcvtaiions) Standard Dev 0 2 L 1 1
Range [523, 523] [609, 625] [674, 679] [691, 696] [692, 699]

Euisun Kim, Ilya Kovalenko, Lauren Lacey, Minoru Shinohara, Jun Ueda, “Timing Analysis of Robotic Neuromodulatory Rehabilitation System for Paired

Associative Stimulation”, JEEE Robotics and Automation Letters (RA-L), Vol 1, Issue 2, pp: 1028—1035, February, 2016
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PRESSURE CONTROL CHALLENGES

Valve Line Al
:n:l 4( @
7.25m | ! Actuator = e
< > . : —
® .
= > °
%) Voo
0w 2 °
o ST
 N— :

9.9 10 10.1 16.2 16.3 16.4 16.5 10.6
Time (sec)

Solution: Closed-form 3-champer model and back-stepping control

Reservoir Actuator
P
Transmission Line Vamto L
reservoir ) ;l P V t\ actuator
“:_I,T\\émv line line ‘\‘l__/?}’}"lf
Valve Fitting

Melih Turkseven and Jun Ueda, An Asymptotically Stable Pressure Observer Based on Load and Displacement Sensing
for Pneumatic Actuators with Long Transmission Lines, IEEE /ASME Transactions on Mechatronics, 2017



LINE DYNAMICS
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PRESSURE ESTIMATION(CONCEPT)

Reservoir

L

Georgia @

Transmission Line

reservoir

Valve

input

Qfﬁmedeby

No delay.
Directly from
the plant

Displacement
Sensor

Ly

Plant
(Cylinder)

Tech
Actuator
Pactuator F
e
I/actuator
e
[l m,
. B,P,
Observer
F.z
Controller Plant
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OBSERVER DYNAMICS Ge%ggg@

Developed observer minimizes the
error in the estimated actuator

force X\ (8N
' x> BV,
Both force and displacement
measurements are utilized i i, RT k(flj
" — " +
Isothermal chamber model, has been X, m,RT g
shown to be stable with regard to pressure
estimation errors™: F, =F,+ M+ Bx
,/71. }\5 <0 if Av' < () (de-pressurization)| 1 A )
)< T A - fi=———(BA~PA4,~F,)
. (Pl) <0 if Av. > () (pressurization) VA,
l 1 ) R
*Gulati and Barth “A Globally Stable, Nonlinear Pressure f2 B V2 Al (PIAI B ]DzAz B Fp )

Observer for Pneumatic Actuators with Servo Valves”, ,2009



OBSERVER BASED Goorgia
(SIMPLE FEEDBACK) CONTROL Tech

. ol i i T observer
Compensates for the perturbations related a0t | | turned off
to unmodeled dynamics =35 | observer i
\2./3()- i turned off i -
: 5 25) | | ==
Reservoir s : = | =
= 20f i =1 observer!
/ Lr: 15_observer E turned on| turned on
- n turned off : i
5 7 m. = 10f observeri i

5t turned on!
——— — !

<>
H
0.5 Hz 1 Hz 1.5 Hz
Pressure 4 9
Force and Observer x 10

observer
Displacement Actuator 3.5f turned off
Pressures w 3t
A A % observer observer
P, 5 257 turned off turned off
/—1 Observe 2
F r F =
zZ, + + e v Z g 157 b observer
4 m,s* +b,s + k —>(—> Controlle > Plant i to Se(river turned on
- - w 1f observer it
Desired Impedanc r TZ =
05 turned on
z F
0

0.5 Hz 1 Hz 1.5 Hz



“BACK-STEPPING” CONTROL STRUCTURE Gegrgia)

B, B, m,,m, Model F,,x F,=F,h = Fph =G, +0,(x)
odel [
PVI’PVZ
/ ) (W, +y ) u—(m. A +m. A,)
F, ¢+ e F £, =T St S
v 2>( Controller Plan ¢ V I% o

Update Ref —
FV(PV1 )

Updated
Reference

Desired
Force

e=F, —F, r )"lel+F; +G,
=F,+ =

+ ks,

e, = F —F ”
2 Va 4 (£, +k2S2)V%+(mCl A+, 4)
u =
S, =e,+ ﬂ'zJ‘ezdt Wive)

L= %(512 + ezz + (/Izk2W2)2)

. -_— 2 7 2
L=-hks, +he,s +9ds, —k,e,” +0d,e,

21



RESULTS Georgia @

* Significant improvement at high
frequency (1-2 Hz)

* Limited degradation in the performance  F, =F,
as the frequency rise ¢ h

* Improvement is marginal when the line
length and the actuation frequency is low

EE Conventional
vzzZNew Model

o)}

18 300

W

250¢

2 Hz

o

2007

150

o

100}

MSE in Force (N?)

—_—

=

2 5 7.25 10

Line Length (2m -- 5Sm -- 7.25m -- 10m)

Melih Turkseven and Jun Ueda, Model Based Force Control of Pneumatic Actuators with Long
Transmission Lines, IEEE /ASME Transactions on Mechatronics, Conditionally accepted
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MOTOR SYSTEM? Jech

SSEP AVG

Potential,-uV

e} Brain

«
b
W\
o 10 20 30 40 50 l
Time after impact, milliseconds

Preliminary results (single subject, 125 trials)

Delayed and widened P25 peak ’(; Spinal
Mechanical stimulation to FCR muscle = ‘V Cord

[
=- S

Mechanical Stimulation

(tendon tapping)
Wolters et al. (J. Physiology, 2005)

Single subject, 1000 trials 53
Electrical stimulation of the median nerve




PAS-INDUCED LTP Georgia |

®* LTP induced by mechanical (robotic) stimulation

* An example for potentiated MEP in a wrist flexor after PAS with
mechanical stimuli compared with Pre in one subject.

1.8 ~
1.6 -
1.4 -
1.2

1 -

MEP amplitude
Relative to Pre

0.8 H

PAS
Pre 0O 10 20 30 40 50
Time course (min)

0.6



RESPONSE TIME IS DIFFERENT FROM PERSON TO PERSON Ge?é%ﬁ&

Timing difference between mechanical stimulation command and TMS(ms)

685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930

subject1 SCALE

o

subject2

subject3

subjecta

subjects

O 00 N OB WwN =

Subject

[y
(<]

subject6
subject?
subject8

subject9

* Each subject has
different time range

that shows long
Iafpncy response

subject10

subject11

* Numbers(0~10) represent the number of long latency response out of 10 trials.

Large individual differences > Machine learning



BAYESIAN ESTIMATION OF NEUROMODULATION Ge('i'regcig&

How to find the “optimal” interstimulus interval in dividable subjects

&TMS
Peripheral

Stimulatio, TMS Long Latency
\ / Response (LLRS)

g

Interstimulus interval

Interstimulus
Time Interval (ISI)

Peripheral
Stimulation

Paired Associative Stimulation (PAS) Electromyography (EMG)

Bayesian optimization

f(x)~GP(m(x), k(x,x")) I Algorithm

1:fort=1.2,..

) 2: x; = argmax,U(x|Dy.t—1)
3: yr = f(x¢)
NUIT_[:S" of 4. Dl:t = {Dl:t—li (xtt yt)}
with PAS 5: Update GP
6:end for

ISIs 26



BAYESIAN ESTIMATION RESULTS Ge%;%ﬂ&@

= costfunction
4571 € break point, iteration=4 |

0 5 10 15 20 25 30
iterations

Acquisition function : Upper Confidence bound
selection criterion

GP — UCB(x) =m(x) + k *o(x)
Kernel Function : Sqluared exponential kernel
' —>(x—x1)?
k(x,x'") =e 2
Cost Function

(estimated time window — true time window)?

cost = 200

# of LLRS

acquisition function

4th Jteration

10 | | © Real Observation
==Mean(predicted)
8 |~ ~ 95% lower
- = 95% upper

150 200 250 300 350 400 450
ISIs[ms]

150 200 250 300 350 400 450 27
ISIs[ms]



IOT MEDICAL HAMMER

Sensor unit with
accelerometer and gyro

Georgia
Tech

b

= Too Weak

Correct

T T T
Incorrect Location d

155

Acceleration, (g)
o
o 3} =

©
o

'
-
T

o
o

0.2 0.3
Time, (s)

0.4

Data Scope | Correct| Correct Correct, NS Correct Location,
Location NS

A Only 95.1% | 85.4% 96.5% 90.97%

B Only 91.7% | 72.9% 91.6% 73.61%

Both 86.4% | 75.7% 86.11% 73.96%

Meinhold and Ueda, An Instrumented Medical Hammer with Diagnostic,
Therapeutic and Pedagogical Applications, ASME DSCC 2017

0.5
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ROBOT-ASSISTED BIMANUAL TASKS Georgia |

Position
Tracking
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‘ al Travel *" ’
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VARIABILITY IN HUMAN STIFFNESS Tech

Muscle stiffness: stochastic parameter in the system %

120

6
100/ )
3 80 R2=0.917 £y

® 60 x_

+ 40 1 E 5
20 @

0 0 e

0 4 6 8 10 L H L M H L MLMH H

Stiffness (/) 2 Levels 3 Levels 4 Levels
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VARIABILITY IN HUMAN STIFFNESS (CONT.) Ge%ggg&

Muscle stiffness S
» Greater co-contraction in oscillatory environment
« Adaptation

6

~©-Stable ccBT
~©-Oscillatory ccBT| 1

© -Stable ccFE
~©-Oscillatory ccFE | -

-
o
[&;]

N
(&)

o
N
T

w
T

N

Coactivation Level (%MVC)
(o)

= B

L PR —L

¢

Coactivation Level (%MVC)
S

N
|

a

i
|
|

|

|
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Coactivation Level(%MVC)
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U
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o
-
T

stable oscillatory stable oscillatory
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o
T

1
N

Trial Number
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Pluckter, Moualeu, Ueda, IEEE Transactions on Robotics, 2017, submitted



MODELING OF MUSCLE COCONTRATION

f=fi+(I-AAp

Frequency

0.06

0.04

> 20° Shoulder Extension
" 00

0.02} Lo

BB/TB cocontraction levels

0 . 0. 0.06
FCU/ECU cocontraction levels
T

BB/TB cocontraction levels

Simulated B (norm) distribution
T T T T T T T

EETRE

0 ) 0.04 0.06
FCU/ECUIg?Iclontraction levels

0.1

0.2

0.4 0.5 0.6
Normalized ||B (t)]]

0.3

0.7

.
0.8

.
0.9 1

Simulation: Analysis of 5000 data points

obtained from all simulations suggests that
the distribution is not normal (p < 0.001).

Moualeu and Ueda, IEEE IROS 2014

Frequency

Cocontraction
(random variable)

Antonio Moualeu

120

100

80

60

40

20

ME, PhD

* 20° Shoulder Flexion
B 00

14
o
<»

=)
=3
2

e
=Y
S

o

0 . oot 006
FCU/ECU cocontraction levels

i

BB/TB cocontraction levels

Experimental Stiffness Level Distribution
: T : T : T : : :

0.4 0.5 0.6 0.7

Normalized Stiffness

0.2

0.3

Experiment: Stiffness distribution obtained

from four (4) subjects.
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PROPOSED STOCHASTIC CONTROLLER ~ Gegrgia|

SVM based stiffness classifier
Switching impedance control for force assisting

Stochastic LQR

Stochastic operator's stiffness

ko .. | Mean & Variance
SVM classifier o 2
Stochastic optimal =
‘ variance suppression E , , >
Switching impedance controller controller Stiffness
g \ Operator-haptic device combined\jy amics
1 v F 1 VA X
+ - h Y+
—0O— —O—> >
£, F-F | mgs? + bgs + ky X;t- LQG + (mo + mp,) s2 + (bo +bp) s+ (I{IO k)

m
Operator w /

force State observer

~—

Mes> + bys +E|

Operator dynamics
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OSCILLATION IN HUMAN-ROBOT “HYBRID” SYSTEM Ge%gggg@

Excessive chatter between states

Fundamental problem of assistive robotics
based on “human effort” measurement

g | iPick | E | | 80
= 0.4 ' :

S : ;

802 : : P 60
o : Place E g
00— — - = 40
> 5

c +H

S 20
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g

§ 20 40 60 80 100 120+
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N
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I
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~
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O
N
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# of State Transitions

Time (s)
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Gallagher, Gao, and Ueda, Advanced Robotics, 2014



INTENTION ESTIMATION FROM GAZE AND CO-georgia

CONTRACTION

/) (/\ /\/
st/ — / P N
Prediction Layer =— « (o, e Psziﬁ.:--/ psf“:
T\
I = /{
- (oo [ o] [o ]
,,,f//\‘ ,_1/ ) ,//
Ky ( s, \;4 i‘/ cs, ‘;* ..2""/ Cs, ) .pe .
N\ N%/ <+ C(lassification Layer
1|
02 O}
M: /AMP, (RMS, WAM (RMS, WA
PPPPPP ) A, etc.)

Layered Hidden
Markov Model

* Properties:
* Modular
* Quick to Train
» Use of Markov Assumptions

Georgialhnstitute
| of Techmnoelogyy

Tech

« sEMG: measurements of electrical

signals from muscles
» Useful for endpoint stiffness

estimation

Bicep Brachii (BB) muscle Triceps Brachii (TB) muscle

Extensor Carpi Ulnaris

Flexor Carpi Ulnaris
(ECU) muscle

(FCU) muscle
Cocontraction Muscle Groups [2]

Yosef Razin, Kevin Pluckter, Jun Ueda, Karen Feigh, “IEEE Robotics and Automaton Letters (RA-L), 2017
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LHMM SETTINGS

» Best feature sets included 3-d.o.f.
force readings and EMG data

» Worst feature sets were missing 3-
d.o.f. force readings or included extra
EMG features

* Minimal performance difference
across number of nodes

9
©
X 0.5
o
L0 15
0 -
20 ,
10 —~L 5 # Nodes
Feature Set 5

Feature Set vs. Number of Nodes vs. Error Rate

Error Rate

Georgia &
Techl||

» Prediction Layer Performance over
time vs. number of nodes

» Performance Ranking switch for 3
and 4 nodes at 50 ms

0.12

7 Nodes

igfF 3 Nodes
iP

Prediction Horizon (s)
Number of Nodes vs. Error Rate

Georgialhstitute
9 Yosef Razin, Kevin Pluckter, Jun Ueda, Karen Feigh, “IEEE Robotics and Automaton Letters (RA-L), 2017

| of Technelogyy
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INTENTION ESTIMATION RESULTS Ge%ggjﬁ@

* Novel haptic device operator intent prediction
algorithm
— Better classification performance than many other

a |g0 rlth ms Classification Ranking for Performance of LHMM vs. Other
Learning Algorithms
Rank | Method | Features Error  Precision  Recall Fl
1 LHMM | ES #10 0.159 0.762 0.780 0.735
10 DT E (10-PC) | 0.229 0.686 0.687  0.685
11 NB ES #13 0.242 0.681 0.654  0.659
15 QDA ES #9 0.275 0.660 0.623 0.621
29 SVM ES #9 0.332 0.611 0.518 0.453
39 LDA FS #9 0.347 0.522 0.512 0.484
50 KNN ES #23 0.363 0.532 0.536  0.532

— Full system accuracy up to 82% with 50 ms window

Yosef Razin, Kevin Pluckter, Jun Ueda, Karen Feigh, “IEEE Robotics and Automaton Letters (RA-L), 2017 38



CO-CONTRACTION TRAINING

Before
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Time(ms) ,10*

Triceps

1 2 3
Time(ms) 104

Co-contraction: Two muscles practice

Contraction : single muscle practice
Control: No practice

39
Ahmar NE, Shinohara M. Slow intermuscular oscillations are associated with cocontraction steadiness. Medicine & Science in Sports & Exercise, 2017
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DEXTEROUS TELEOPERATION FOR
DISASTER RELIEF (DOD-MOTIE)

Hybrid Site Sensing and Human-multi-robot Team
Collaboration for Disaster Relief at Nuclear Power Plants

(Semantically enriched as-built damaged site visualization )

Thermal/radiation point cloud

3D Radiation intensity map

Ground Robot for Mapping

Damaged structure modeling Radiation images

\ Infrastructure (GroMI)

(Shared-control of a multi-DOF dexterous hand-arm system with )
adaptive gain scheduling

\ Dexterous hand manipulation and integrated hand-arm system )

R 2

(Risk assessment and response strategies )

%

Consequence
Likelihood

A
Almost
Certain

B
Likely

c
Possible

D
Unlikely

E
Rare

sssssssss

\ Update priority areas to focus j

2

(" Assessment of the impact of the operational system with respect to )
task performance and cognitive burden

GHOST Robot

\ Remotely controlling multiple unmanned excavator robots




UNMANNED EXCAVATOR

Tech

Georgia &

Unmanned Relief/Restoration Robot using Promptly Renovated Excavator
— Retrofit unmanned tele-operation robot into commercial excavator
— Control strategy for the unmanned relief/restoration robot

Sensor System

Gravity compensation
PD control e Full inverse dynamics equation

Configuration of unmanned relief/restoration robot

Dr. Han, Robotics Laboratory, Hanyang University at Erica.

Installation type robotic manipulator
for the unmanned excavator

42



Georgia

ADAPTIVE GAIN SCHEDULING FOR @
ROBUST TELE-OPERATION (UEDA-GT) fochl

To utilize the dynamics of the environment and intent of the operator, to
adjust the controller gains and maintain appropriate, stability margins, to
balance the performance and stability.

Human operator ~ Operator

impedance 2-port network representation of

Im Contact interface I

Zop 1 | |

PN e

Operator Robot

- - P Gain scheduler [«
Operator intent (operation mode) Dynamics of environment

Operator as a stochastic system (muscle contraction, cognitive mode...)
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SHARED CONTROL FOR SCALED HAND-ARM
TELE-OPERATION

Te
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=3
===

| e ¢ S| g

e O] 4
EESM\; = %I . : EE.

[u;.. UJ] IU. 114] [\',\'_.] I[l#..lh] [ulu] [u,ud] [u]‘ wl  [u.. i
»  E— :ﬂ [ulu u, ud_

Continuous ' Virtual constraints Coordinated Collaborative Traded ' Indirect

Position/orientation of wrist and arm

Contact state sequence

Manipulation recognition

1
1
1
E 1
s ok | 1
7 1
__ |
1
Human operator I Preprogrammed
: Motion primitives
1
1
1
1
1
1
1
1
1
1
1

Hand motion planning I

Multifingered hand

Hand-arm system
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JETPACK Georgia @

Georgia | Research
Tech|] Institute

Problem. Solved.

doerrack @9
- o gy

Michael Mayo, GTRI
@ Jetpack Aviation

Shock
absorption




BODY PROTECTIVE EXOSKELETON Geqenl

torso

hip

knee C lgravity
Vertical
Mobility
Gear
ﬂ. ankle p Shock
Shock absorption
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T —— —— Vertical Impact Magnitudes (kg m/s)
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Muscle activity (EMG) measurement Dynamic falling simulation



How to protect lower limb Gegroia &

Muscle and tendon injuries Bone and cartilage injuries
“‘orthogonal” to each other

@ @
Excessive joint

movements _
Excessive pressure
to bone/cartilage

Admissible motion space | Constrained motion space
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Series and parallel connection of Georgia &
mechanical shock absorbers Tech|)

Joint
protection

Load
distribution
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CLASSIFICATION OF EXOSKELETON FUNCTIONS Gec_i_ggciﬁ&

Reciprocal screw theory

Viscoelastic
torque

Equivalent
wrench

Knee joint

torque

Reciprocal
wrench

Condition 1: Protection of bones and joints: External shock forces
must be in the constrained motion space of the exoskeleton
structure (i.e., reciprocal wrenches) and must be in the admissible
motion space of the human skeleton (i.e., non-reciprocal wrenches),
ideally orthogonal to each other

Condition 2: Protection of muscles: Equivalent joint efforts of
external shock forces and viscoelastic forces from shock absorption
elements must be non-orthogonal in the joint space, ideally parallel
to each other

Condition 3: Impact and shock reduction to the entire system:
External shock forces and equivalent viscoelastic forces from shock
absorption elements must be non-orthogonal in the task space.

Condition 4: Force augmentation: Equivalent wrenches of muscle
forces and robot actuation efforts must be non-orthogonal to each
other in the task space, ideally parallel to each other, and must not
be in the constrained motion space of either of the systems.

49



WEARABLE ROBOT FOR CONSTRUCTION .o gia

WORKER SAFETY

* @Goal: Assisting masonry workers to enhance the
safety through the integration of automated activity &
posture analysis and exoskeleton technology.

Tech &

* Specific Objectives: To develop a smart robotic exoskeleton which provides

workers:

1) Physical constraints to decrease the risk of back injuries

2) Strength assistance as long as the posture is in the safe range.

Best Practice by NIOSH

A
Poor
postures

»
>

[
>

A
51IbE

Max.
recommended
range
(NIOSH)

»
»
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PROPOSED PNEUMATIC EXOSKELETON SYSTEM Ge?,gtcig&

Constraining backbone Allowable range
. (clutch off) f
displacement C .. b
onstraining a
\ hlp jOint S L “yirtual wall”

b . displacement

>
Signal processing

|/ | & unit + controller
" +battery
Y —Support ' w5
v structure
In-sole pressure sensor Portable air sources 51

Clutch on
“virtual wall”




CDC/NIOSH.... Gegrggcig&

®

https://blogs.cdc.gov/niosh-science-blog/2016/03/04/exoskeletons/

CDC Centers for Disease Control and Prevention | | Q |

CDC 24/7: Saving Lives, Protecting People™
CDCA-ZINDEX Vv

NIOSH Science Blog

Wearable Exoskeletons to Reduce Physical Load at Work

Posted on March 4, 2016 by Brian D. Lowe, PhD, CPE; Robert B. Dick, PhD, Captain USPHS (Ret.); Stephen Hudock, PhD, CSP; and Thomas Bobick, PhD, CSP, CPE

Posts by Category +
Posts b Mont + @B
About This Site o Robotic-like suits which provide powered assist and increase human strength may conjure thoughts of sci-fi and

superhero film genres. But these wearable exoskeleton devices are now a reality and the market for their applications

in the workplace is projected to increase significantly in the next five years. As with any technologic innovation some of

Search the blog
the pros and cons and barriers to adoption are not completely understood. In this blog our objectives are to: (1)
Search for: describe wearable exoskeletons in the context of workplace safety and health control strategies; (2) highlight current
and projected trends related to industrial applications of these technologies; and (3) invite input from our stakeholders
onworkplace health and safety experiences, positive or negative, with these devices.

Search The wearable exoskeleton was defined by de Looze et al. (2015) as “...a wearable, external mechanical structure that
enhances the power of a person. Exoskeletons can be classified as ‘active’ or ‘passive. An active exoskeleton comprises
one or more actuators that augments the human'’s power and helps in actuating the human joints. ...A strictly passive

system does not use any type of actuator, but rather uses materials, springs or dampers with the ability to store energy
pging Workers P!mtlo courtesy of SuitX, US harvested by human motioTI and to ufe this as required tals.upport aposture or a.mot/.‘on." Passive s.ystems require no
Bionics, Inc. external power and use springs, elastic cords, or other resilient elements to provide either a restoring moment that

risks before widespread workplace adoption. Some questions to address include, but are not limited to:

¢ Do some devices create a transference of load between musculoskeletal regions that still puts the worker at risk? For example, a vest or hip-supported
device may transfer load off the arms and shoulders, but the increase in total load transferred to the spine and lower extremities may also have long
term effects.

¢ Does the added weight of some devices increase energy expenditure/metabolic work load? Do some devices affect user comfort?

¢ Do some devices affect the balance of the wearer by changing their center of mass or increasing rate of fatigue in the lower extremity muscles? As
reported by de Looze et al. (2015) increases in leg muscle activity have been reported for some devices (e.g. Barret and Fathallah, 2001; Ulrey and
Fathallah, 2013); this may occur because the “external forces applied by the [exoskeleton] equipment needs to be counteracted to retain balance...”. Can

this increase in leg muscle activity contribute to lower extremity fatigue and increased risk for loss of balance? Correspondingly, are fall risks increased

because of this possible leg fatigue and loss of balance?



EXOSKELETON FOR CONSTRUCTION SAFETY
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January 2017
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Exoskeleton

™  Teleoperation

High-speed servoing

Jun Ueda
Yuichi Kurita
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HUMAN MODELING

FOR BIO-INSPIRED ROBOTICS
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Sep 2016
Academic Press

|

ion

54



QUESTIONS?

CENTER FOR COMPACT AND EFFIGIENT FLUID POWER
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