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CLINICAL NEED: HEMIPARESIS

V2 Prototype

w A	paralysis	of	one	side	of	the	body	widely	
observed	in	stroke	survivors

w 600,000	individuals	suffer	strokes	each	year	in	
the	U.S.

w Restricts	activities	of	daily	living	(ADLs)

w Neural	plasticity
w Physical	therapy	is	an	intensive	process
w Unsatisfactory	outcomes	performed	by	

unskilled	therapists
w Scientific	evaluation	needed	(e.g.,	fMRI)	
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INDUSTRIAL NEED: WORKER SAFETY

V2 Prototype

w Industry	still	largely	relies	on	manual	
assembly	by	human	workers	(e.g.,	
automobile,	aerospace,	construction…)

w Force	assistance
w Work-related	musculoskeletal	disorders	

(WMSDs)
e.g.,	Back	injuries

w Situational	awareness
w Skill	training &	assessment
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Sensorimotor	function
enhancement

Motor	control	(Applied	Physiology)

Motion	control

Force-assisting	system

Paired	associative	stimulation	
for	stroke	rehabilitation

Wheelchair	evaluation

Robotic	eye

Teleoperation

Exoskeleton

Robotic	assembly
and	error	detection

Deployable	arm

High-speed	servoing 5



Motion	control

Feedback 
Controller

Robot

Biologically-inspired
Robotics

Rehabilitation Robotics
Assistive Robotics

Motor	control	(Applied	Physiology)

6



IS	REHABILITATION	ROBOTICS	EFFECTIVE?

Conclusions. For subacute stroke participants with moderate to severe gait impairments, the 
diversity of conventional gait training interventions appears to be more effective than 
robotic-assisted gait training for facilitating returns in walking ability.

Neurorehabil Neural Repair January 2009 vol. 23 no. 1 5-13 
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PAS:	PAIRED	ASSOCIATIVE	STIMULATION

A: Cartoons for explaining the experimental procedure. 
B: Potentiated motor evoked potential (MEP) after PAS (Post) of different 
durations, compared with Pre

Nitsche MA, et al, Timing-dependent modulation of associative plasticity by general 
network excitability in the human motor cortex. J Neurosci 2007

A

B

Transcranial magnetic stimulation (TMS)
&
Electrical peripheral stimulation

*Jayaram, G, et al. Contralesional paired associative stimulation
increases paretic lower limb motor excitability post-stroke. 
Experimental Brain Research, 2008

w Long-term	potentiation	(LTP)	
can	be	induced	by	PAS	with	
electrical	stimuli

w Observed	increased	motor	
excitability	in	the	paretic	
lower	limb	of	chronic	stroke	
patients	when	walking*

w PAS	may	be	used	as	an	
adjuvant	therapy	for	stroke	
patients*
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CLINICAL	PRACTICE:	REPETITIVE	FACILITATION	EXERCISE	(RFE)

Dr. Kawahira, MD, Kagoshima 
University, Japan

Kawahira K, et al. Journal of Rehabilitation Medicine 36: 159-64, 2004
Kawahira K, et al. International Journal of Rehabilitation Research , 2009
Kawahira K, et al. Brain Injury 24: 1202-13, 2010

• Induces	stretch	reflexes	by	tendon	tapping
• Promising	clinical	results	
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NEUROMODULATION– PAS-INDUCED	LTP

Verbal instructions

Muscle

Spinal 
Cord

Brain

Central 
Nervous 
System

Peripheral 
Nervous 
System

TMS

Electrical 
Stimulation

Physiology research

Muscle

Spinal 
Cord

Brain

Voluntary signal
(effort to move)

Clinical practice (Manual therapy)

Mechanical
Stimulation
(tendon tapping)

Effective time window
10-15ms Effective time window

???
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ROBOTIC	PAS	FOR	CORTICAL	FACILITATION	WITH	
AFFERENT	STIMULATION
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ROBOTICALLY	PERFORMED	PAS

Mechanical Only

90% RMT TMS Only

w Successful	synchronization	between	TMS	and	hammer	hit	across	40-60ms
time	frame

w Response	more	dispersed	in	time	due	to	the	desynchronized	activation	of	
muscle	spindles

40-60ms

TMS

Mechanical	impact

Overlapped long 
latency

TMS

Robot

12



MECHANICAL	VS	ELECTRICAL	STIMULATION

Euisun Kim, Ilya Kovalenko, Minoru Shinohara and Jun Ueda, Optimal Inter-stimulus Interval for Paired Associative 
Stimulation with Mechanical Stimulation, Neural Plasticity, under review.

Electrical stimulation Mechanical stimulation

Dispersion in
muscle spindle firing
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IS	PNEUMATIC	ACTUATION	INACCURATE?

fMRI		Laboratory

Air	valves

fMRI		Control	Room

Mechanical	
Stimulus

5	– 7	m

Observations:
Pure time delay is not significant (even for a 7.5m line) 
Pressure attenuation is significant, but predictable
Hammer motion is highly repeatable (SD < 5ms)

Required performance characteristics is NOT fast speed 
of response, BUT small variability in impact application
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TIMING	ANALYSIS
Pressure
Sensor

Pneumatic
Cylinder

Accelerometer
Force
Sensor

Hammer

Device only

EMG 
Amplifier

EMG 
Electrodes

Robotic 
Rehab 
DeviceHuman 

wrist

With subject

Top	Chamber	Fills	Up Hammer	Starts	to	Extend Hammer	Hits	Hand Hammer	Bounces	
Back	to	Hand

EMG	Picks	Up	Mech.	
Stimulus

Force	Sensor
(50	Observations)

Average 523 621 688 690 N/A
Standard	Dev 0 2 1 1 N/A

Range [523,	523] [617,	626] [686,	690] [689,	692] N/A

Subject	1
(538	Observations)

Average 523 631 683 698 701
Standard	Dev 0 5 4 4 4

Range [523,	523] [613,	640] [669,	688] [688,	704] [689,	712]

Subject	2
(324	Observations)

Average 523 626 672 681 695
Standard	Dev 0 4 2 2 2

Range [523,	523] [614,	650] [666,	678] [673,	688] [689,	703]

Subject	3
(252	Observations)

Average 523 615 676 693 695
Standard	Dev 0 2 1 1 1

Range [523,	523] [609,	625] [674,	679] [691,	696] [692,	699]

unit: ms

Euisun Kim, Ilya Kovalenko, Lauren Lacey, Minoru Shinohara, Jun Ueda, “Timing Analysis of Robotic Neuromodulatory Rehabilitation System for Paired 
Associative Stimulation”, IEEE Robotics and Automation Letters (RA-L), Vol 1, Issue 2, pp: 1028–1035, February, 2016 
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PRESSURE CONTROL	CHALLENGES

Solution: Closed-form 3-champer model and back-stepping control 

Melih Turkseven and Jun Ueda, An Asymptotically Stable Pressure Observer Based on Load and Displacement Sensing 
for Pneumatic Actuators with Long Transmission Lines, IEEE /ASME Transactions on Mechatronics, 2017
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LINE	DYNAMICS
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PRESSURE	ESTIMATION(CONCEPT)
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OBSERVER	DYNAMICS

¨ Developed	observer	minimizes	the	
error	in	the	estimated	actuator	
force

¨ Both	force	and	displacement	
measurements	are	utilized

÷÷
ø

ö
çç
è

æ
=÷÷
ø

ö
çç
è

æ

22

11

2

1

VP
VP

x
x

÷÷
ø

ö
çç
è

æ
+÷
÷
ø

ö
ç
ç
è

æ
=÷

÷
ø

ö
ç
ç
è

æ

2

1

2

1

2

1

ˆ

ˆ

ˆ

ˆ

f
f

k
RTm

RTm

x

x

!

!

!

!

)ˆˆ(1
2211

21
1 pFAPAP

AV
f ---=

)ˆˆ(1
2211

12
2 pFAPAP

AV
f --=

xBxMFF ep !!! ++=

iiiii VPVPRTm !!! +=

Isothermal chamber model, has been 
shown to be stable with regard to pressure 
estimation errors*:

0)~(~ <ii Pm!
0)~(~ £ii Pm!

0<
iv

A
0>

iv
A

if

if

(de-pressurization)

(pressurization)

*Gulati and Barth “A Globally Stable, Nonlinear Pressure 
Observer for Pneumatic Actuators with Servo Valves”, ,2009
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OBSERVER	BASED	
(SIMPLE	FEEDBACK)	CONTROL
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“BACK-STEPPING”	CONTROL	STRUCTURE
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RESULTS

Conventional
New Model

Line Length (2m -- 5m -- 7.25m -- 10m)
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• Significant	improvement	at	high	
frequency	(1-2	Hz)

• Limited	degradation	in	the	performance	
as	the	frequency	rise

• Improvement	is	marginal	when	the	line	
length	and	the	actuation	frequency	is	low	
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Melih Turkseven and Jun Ueda, Model Based Force Control of Pneumatic Actuators with Long 
Transmission Lines, IEEE /ASME Transactions on Mechatronics, Conditionally accepted
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DISPERSION	IN	SENSORY	SYSTEM	OR	
MOTOR	SYSTEM?

Muscle

Spinal 
Cord

Brain

Mechanical Stimulation
(tendon tapping)

Preliminary results (single subject, 125 trials)
Delayed and widened P25 peak
Mechanical stimulation to FCR muscle

Wolters et al. (J. Physiology, 2005) 
Single subject, 1000 trials
Electrical stimulation of the median nerve 23



PAS-INDUCED	LTP

• LTP	induced	by	mechanical	(robotic)	stimulation
• An	example	for	potentiated	MEP	in	a	wrist	flexor	after	PAS	with	

mechanical	stimuli	compared	with	Pre	in	one	subject.
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RESPONSE	TIME	IS	DIFFERENT	FROM	PERSON	TO	PERSON

Subject

Timing difference between mechanical stimulation command and TMS(ms)

* Numbers(0~10) represent the number of long latency response out of 10 trials.

* Each subject has 
different time range 
that shows long 
latency response.

Large individual differences à Machine learning 25



BAYESIAN	ESTIMATION	OF	NEUROMODULATION

Paired Associative Stimulation (PAS)

Peripheral 
Stimulation TMS Long Latency 

Response (LLRS)

Electromyography (EMG)

Interstimulus interval

How to find the “optimal” interstimulus interval in dividable subjects 

ISIs

Number of 
LLRS 

with PAS

Bayesian optimization
𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎
1: 𝑓𝑜𝑟	𝑡 = 1,2, …
2:	𝑥6 = 𝑎𝑟𝑔𝑚𝑎𝑥:𝑈 𝑥 𝐷=:6>=
3:	𝑦6 = 𝑓(𝑥6)
4: 𝐷=:6 = 𝐷=:6>=, 𝑥6, 𝑦6
5: 𝑈𝑝𝑑𝑎𝑡𝑒	𝐺𝑃
6: 𝑒𝑛𝑑	𝑓𝑜𝑟

𝑓 𝑥 ~𝐺𝑃(𝑚 𝑥 , 𝑘 𝑥, 𝑥M )
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BAYESIAN	ESTIMATION	RESULTS

4th Iteration

• Acquisition	function	:	Upper	Confidence	bound	
selection	criterion

𝐺𝑃 − 𝑈𝐶𝐵 𝑥 = 𝑚 𝑥 + 	𝜅 ∗ 𝜎(𝑥)

• Kernel	Function	:	Squared	exponential	kernel
𝑘 𝑥, 𝑥M = 𝑒>

=
V(:>:M)

W

𝑐𝑜𝑠𝑡 = 	Z
(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑡𝑖𝑚𝑒	𝑤𝑖𝑛𝑑𝑜𝑤 − 𝑡𝑟𝑢𝑒	𝑡𝑖𝑚𝑒	𝑤𝑖𝑛𝑑𝑜𝑤)V

200

�

�

• Cost	Function
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IOT MEDICAL	HAMMER

Tablet

Sensor unit with
accelerometer and gyro

Data	Scope Correct Correct	
Location

Correct,	NS Correct	Location,	
NS

A	Only 95.1% 85.4% 96.5% 90.97%

B	Only 91.7% 72.9% 91.6% 73.61%

Both 86.4% 75.7% 86.11% 73.96%

Meinhold and Ueda, An Instrumented Medical Hammer with Diagnostic, 
Therapeutic and Pedagogical Applications, ASME DSCC 2017
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ROBOT-ASSISTED	BIMANUAL	TASKS

• Human	modes	in	robot-assisted	assembly	

Factory GM Flint Assembly

Handle	Bar

Crane	Rail

Extending
Structure

Monitor

Position	
Tracking	
Marker

Total	Travel	
Distance:	2.8	m
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VARIABILITY	IN	HUMAN	STIFFNESS

30

R2 = 0.917

Muscle stiffness: stochastic parameter in the system

30

Ready Move
2%

98% 99%

Hold

99%

<1%

<1%

1%1%
<1%



VARIABILITY	IN	HUMAN	STIFFNESS	(CONT.)

Pluckter, Moualeu, Ueda, IEEE Transactions on Robotics, 2017, submitted
31
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MODELING	OF	MUSCLE	COCONTRATION
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Moualeu and Ueda, IEEE IROS 2014

Antonio Moualeu
ME, PhD

Simulation: Analysis of 5000 data points 
obtained from all simulations suggests that 
the  distribution is not normal (p < 0.001).

Experiment: Stiffness distribution obtained 
from four (4) subjects. 
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PROPOSED	STOCHASTIC	CONTROLLER

X

Operator 
force

+
+

+
˗

+
˗Fo Fm Xd

FhLQG

ko

Pr
ob

ab
ili

ty

Stiffness

Mean & Variance

Stochastic operator's stiffness

Switching impedance controller

Stochastic optimal
variance suppression

controller

Operator dynamics

Operator-haptic device combined dynamics

State observer

SVM classifier

w SVM	based	stiffness	classifier
w Switching impedance control for force assisting
w Stochastic	LQR
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OSCILLATION	IN	HUMAN-ROBOT	“HYBRID”	SYSTEM	

35
Gallagher, Gao, and Ueda, Advanced Robotics, 2014

Excessive	chatter	between	states

Fundamental	problem	of	assistive	robotics	
based	on	“human	effort”	measurement
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INTENTION	ESTIMATION	FROM	GAZE	AND	CO-
CONTRACTION

Bicep Brachii (BB) muscle Triceps Brachii (TB) muscle

Flexor Carpi Ulnaris
(FCU) muscle

Extensor Carpi Ulnaris
(ECU) muscle

Layered Hidden
Markov Model

• Properties:
• Modular
• Quick to Train
• Use of Markov Assumptions

• sEMG: measurements of electrical 
signals from muscles

• Useful for endpoint stiffness 
estimation

Cocontraction Muscle Groups [2]

Prediction Layer

Classification Layer

Yosef Razin, Kevin Pluckter, Jun Ueda, Karen Feigh, “IEEE Robotics and Automaton Letters (RA-L), 2017 36



LHMM	SETTINGS

Feature Set vs. Number of Nodes vs. Error Rate Number of Nodes vs. Error Rate

• Best feature sets included 3-d.o.f. 
force readings and EMG data

• Worst feature sets were missing 3-
d.o.f. force readings or included extra 
EMG features

• Minimal performance difference 
across number of nodes

• Prediction Layer Performance over 
time vs. number of nodes

• Performance Ranking switch for 3 
and 4 nodes at 50 ms

37Yosef Razin, Kevin Pluckter, Jun Ueda, Karen Feigh, “IEEE Robotics and Automaton Letters (RA-L), 2017



INTENTION	ESTIMATION	RESULTS

• Novel	haptic	device	operator	intent	prediction	
algorithm
– Better	classification	performance	than	many	other	
algorithms

– Full	system	accuracy	up	to	82%	with	50	ms window

Classification Ranking for Performance of LHMM vs. Other 
Learning Algorithms

38Yosef Razin, Kevin Pluckter, Jun Ueda, Karen Feigh, “IEEE Robotics and Automaton Letters (RA-L), 2017



CO-CONTRACTION	TRAINING

Ahmar NE, Shinohara M. Slow intermuscular oscillations are associated with cocontraction steadiness. Medicine & Science in Sports & Exercise, 2017

Before After

Co-contraction: Two muscles practice
Contraction : single muscle practice
Control: No practice

39
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DEXTEROUS	TELEOPERATION	FOR	
DISASTER	RELIEF	(DOD-MOTIE)

Ground	Robot	for	Mapping	
Infrastructure	(GroMI)	

Thermal/radiation	point	cloud 3D	Radiation	intensity	map

Radiation	imagesDamaged	structure	modeling

Semantically	enriched	as-built	damaged	site	visualization	

Risk	assessment	and	response	strategies	

Update	priority	areas	to	focus

Shared-control	of	a	multi-DOF	dexterous	hand-arm	system	with	
adaptive	gain	scheduling

Assessment	of	the	impact	of	the	operational	system	with	respect	to	
task	performance	and	cognitive	burden

Remotely	controlling	multiple	unmanned	excavator	robots

Template sequence
Input sequence

Data glove & position/orientation sensor

Robot-Hand Robot	arm

Dexterous	hand	manipulation	and	integrated	hand-arm	system

GT Cho GT Ueda

HYU HanHYU Ahn

Hybrid Site Sensing and Human-multi-robot Team 
Collaboration for Disaster Relief at Nuclear Power Plants
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UNMANNED	EXCAVATOR

Unmanned Relief/Restoration Robot using Promptly Renovated Excavator
– Retrofit unmanned tele-operation robot into commercial excavator 
– Control strategy for the unmanned relief/restoration robot

Configuration	of	unmanned	relief/restoration	robot
Installation	type	robotic	manipulator	

for	the	unmanned	excavator

Dr. Han, Robotics Laboratory, Hanyang University at Erica.
42



ADAPTIVE	GAIN	SCHEDULING	FOR	
ROBUST	TELE-OPERATION	(UEDA-GT)

To utilize	the	dynamics	of	the	environment	and	intent	of	the	operator,	to	
adjust	the	controller	gains	and	maintain	appropriate,	stability	margins,	to	
balance	the	performance	and	stability.	

Im Is

VsVm
ZsZm

Um Us
Zenv

Zop

Vop
Operator Robot

2-port network representation of
Contact interface

Environment

Operator
impedance 

Human operator

Gain	scheduler
Operator intent (operation mode) Dynamics of environment

Operator as a stochastic system (muscle contraction, cognitive mode…)
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SHARED	CONTROL	FOR	SCALED	HAND-ARM	
TELE-OPERATION

Robot arm

Hand-arm system

Position/orientation of wrist and arm

Human operator

Robot arm trajectory

Manipulation recognition

Hand motion planning

Manipulation recognition algorithm

Multifingered hand

Contact state sequence

Preprogrammed
Motion primitives

Robot gripper trajectory

Ueda, Kondo, Ogasawara, Mechanism and Machine Theory, 2010
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JETPACK

Shock 
absorption

Joint 
protection

Michael Mayo, GTRI 
@ Jetpack Aviation
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BODY	PROTECTIVE	EXOSKELETON

With exoskeleton Without exoskeleton

Muscle activity (EMG) measurement Dynamic falling simulation 46



How	to	protect	lower	limb

Muscle and tendon injuries Bone and cartilage injuries

Excessive joint 
movements

Excessive pressure
to bone/cartilage

⊥
“orthogonal” to each other

Admissible motion space ⊥ Constrained motion space
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Series	and	parallel	connection	of	
mechanical	shock	absorbers

Shock 
absorption

Joint 
protection

Load 
distribution

Human
M

A

Soft-actuator model
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CLASSIFICATION	OF	EXOSKELETON	FUNCTIONS

Reciprocal 
wrench

Equivalent 
wrench

Knee joint 
torque

Viscoelastic 
torque

Reciprocal screw theory Condition 1: Protection of bones and joints: External shock forces 
must be in the constrained motion space of the exoskeleton 
structure (i.e., reciprocal wrenches) and must be in the admissible 
motion space of the human skeleton (i.e., non-reciprocal wrenches), 
ideally orthogonal to each other 

Condition 2: Protection of muscles: Equivalent joint efforts of 
external shock forces and viscoelastic forces from shock absorption 
elements must be non-orthogonal in the joint space, ideally parallel 
to each other

Condition 3: Impact and shock reduction to the entire system: 
External shock forces and equivalent viscoelastic forces from shock 
absorption elements must be non-orthogonal in the task space.  

Condition 4: Force augmentation: Equivalent wrenches of muscle 
forces and robot actuation efforts must be non-orthogonal to each 
other in the task space, ideally parallel to each other, and must not 
be in the constrained motion space of either of the systems. 
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WEARABLE	ROBOT	FOR	CONSTRUCTION	
WORKER	SAFETY
• Goal:	 Assisting	masonry	workers	to	enhance	the	

safety through	the	integration	of	automated activity	&	
posture analysis	and	exoskeleton	technology.

• Specific	Objectives:	To	develop	a	smart	robotic	exoskeleton	which	provides	
workers:
1) Physical	constraints	to	decrease	the	risk	of	back	injuries
2) Strength	assistance as	long	as	the	posture	is	in	the	safe	range.	

Best Practice by NIOSH

Poor 
postures

10” 

30°

Max. 
recommended 
range 
(NIOSH)

51lb
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PROPOSED	PNEUMATIC	EXOSKELETON	SYSTEM

In-sole	pressure	sensor

Support	
structure

Constraining	backbone	
displacement Constraining

hip	joint
displacement

Signal	processing
unit	+	controller	
+battery

Portable	air	sources

Allowable	range
(clutch	off)

Clutch	on
“virtual	wall”

Clutch	on
“virtual	wall”
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CDC/NIOSH….

https://blogs.cdc.gov/niosh-science-blog/2016/03/04/exoskeletons/
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Air	cylinders

Air clutch

Flow control 
valve

Control	system	
and	battery

EXOSKELETON	FOR	CONSTRUCTION	SAFETY
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Sensorimotor	function
enhancement

Applied	physiology	(motor	control)

Motion	control

Force-assisting	system

Paired	associative	stimulation	
for	stroke	rehabilitation

Wheelchair	evaluation

Robotic	eye

Teleoperation

Exoskeleton

Robotic	assembly
and	error	detection

Deployable	arm

High-speed	servoing

Sensorimotor	function
enhancement

Paired	associative	stimulation	
for	stroke	rehabilitationUeda   &    Kurita   

Sep 2016
Academic Press

Ueda, Schulz, Asada
January 2017
Butterworth-Heinemann
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