Computational Algebraic Geometry Methods with Applications to Synchronization and

Power Flow Equations

Dhagash Mehta United Technologies Research Center

PS: This document contains no technical data subject to the EAR or the ITAR.

Complex Systems: Synchronization

Fireflies at the Smoky Mountains (Gatlinburg, Tennessee, USA). Courtesy: www.gatlinburgtnguide.com

Complex Systems: Synchronization

Fireflies at the Smoky Mountains (Gatlinburg, Tennessee, USA). Courtesy: www.gatlinburgtnguide.com

Complex Systems: Synchronization

Rhythmic applause

Complex Systems: Synchronization

Power networks and electrical grids.

Complex Systems: Synchronization

Neural network synchronization

Complex Systems: Synchronization

The Kuramoto Model:

$$
\frac{d \theta_{i}}{d t}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right), \text { for } i=1, \ldots, N
$$

ω_{i} are normal frequencies
i.e. the frequency without the presence of the sine terms.

Complex Systems: Synchronization

The Kuramoto Model:

$$
\begin{aligned}
& \frac{d \theta_{i}}{d t}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right), \text { for } i=1, \ldots, N \\
& \quad \omega_{i} \text { are normal frequencies } \\
& \text { i.e. the frequency without the presence of the sine } \\
& \text { terms. }
\end{aligned}
$$

- Each oscillator (firefly) knows what all other oscillators are doing, called the complete graph.
- One can also have other more realistic graphs, e.g., random, cyclic, small-world, etc.

Complex Systems: Synchronization

The Kuramoto Model:

$$
\begin{aligned}
& \frac{d \theta_{i}}{d t}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right), \text { for } i=1, \ldots, N \\
& \quad \omega_{i} \text { are normal frequencies } \\
& \text { i.e. the frequency without the presence of the sine } \\
& \text { terms. }
\end{aligned}
$$

- ' K ' is the strength/amount of knowledge about other oscillators.
- In this set up, each oscillator has the same amount of knowledge about others as all others.
- One can also have a setup with different values of K for each pair of oscillators and so on.

Complex Systems: Synchronization

The Kuramoto Model:

$$
\frac{d \theta_{i}}{d t}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right), \text { for } i=1, \ldots, N
$$

- when K=0, all oscillators oscillate with their natural frequencies
- increasing K from 0, the oscillators start working together
- but only at a particular value of K, they are synchronized

Complex Systems: Synchronization

The Kuramoto Model:

$$
\frac{d \theta_{i}}{d t}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right), \text { for } i=1, \ldots, N
$$

- when K=0, all oscillators oscillate with their natural frequencies
- increasing K from 0, the oscillators start working together
- but only at a particular value of K, they are synchronized

$$
\begin{aligned}
& K<K_{c}, \text { no synchronization } \\
& K \geq K_{c} \text {, synchronization }
\end{aligned}
$$

Complex Systems: Synchronization

The Kuramoto Model:

$$
\frac{d \theta_{i}}{d t}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right), \text { for } i=1, \ldots, N
$$

- Many exact results available for $N \rightarrow \infty$

Complex Systems: Synchronization

The Kuramoto Model:

$$
\frac{d \theta_{i}}{d t}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right), \text { for } i=1, \ldots, N
$$

- Many exact results available for $N \rightarrow \infty$
- But the finite size case has been very difficult so far, though it is more realistic: finite no. of fireflies, neurons, nodes in the power networks, etc.

Complex Systems: Synchronization

The Kuramoto Model:

$$
\frac{d \theta_{i}}{d t}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right), \text { for } i=1, \ldots, N
$$

- Many exact results available for $N \rightarrow \infty$
- But the finite size case has been very difficult so far, though it is more realistic: finite no. of fireflies, neurons, nodes in the power networks, etc.
- For finite N : run the dynamical system (solve the ODEs from random initial conditions)

Complex Systems: Synchronization

The Kuramoto Model:

$$
\frac{d \theta_{i}}{d t}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right), \text { for } i=1, \ldots, N
$$

- Many exact results available for $N \rightarrow \infty$
- But the finite size case has been very difficult so far, though it is more realistic: finite no. of fireflies, neurons, nodes in the power networks, etc.
- For finite N : run the dynamical system (solve the ODEs from random initial conditions)

Problems: 1. Dependent on initial conditions
2. multiple stable steady states
3. Dependent on step size
4. No stable steady state?

Complex Systems: Synchronization

The Kuramoto Model:

$$
\frac{d \theta_{i}}{d t}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right), \text { for } i=1, \ldots, N
$$

A different mathematical set up of the problem:

- Find the first instance of K, starting from $K=0$, for which the below system has at least one stable steady state.

$$
\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right)=0, \text { for } i=1, \ldots, N
$$

Complex Systems: Synchronization

The Kuramoto Model (power flow equations for lossless network with all nodes being PV nodes):

$$
\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right)=0, \text { for } i=1, \ldots, N
$$

Complex Systems: Synchronization

The Kuramoto Model:

$$
\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right)=0, \text { for } i=1, \ldots, N
$$

Complex Systems: Synchronization

The Kuramoto Model:

$$
\begin{aligned}
& \omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right)=0, \text { for } i=1, \ldots, N \\
& \quad \sin \theta_{i}:=s_{i} \quad \cos \theta_{i}:=c_{i}
\end{aligned}
$$

Complex Systems: Synchronization

The Kuramoto Model:

$$
\begin{aligned}
& \omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right)=0, \text { for } i=1, \ldots, N \\
& \quad \sin \theta_{i}:=s_{i} \quad \cos \theta_{i}:=c_{i} \\
& \omega_{i}+\frac{K}{N} \sum_{j=1}^{N}\left(c_{i} s_{j}-s_{i} c_{j}\right)=0, \text { for } i=1, \ldots, N
\end{aligned}
$$

Complex Systems: Synchronization

The Kuramoto Model:

$$
\begin{aligned}
& \omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right)=0, \text { for } i=1, \ldots, N \\
& \sin \theta_{i}:=s_{i} \quad \cos \theta_{i}:=c_{i} \\
& \omega_{i}+\frac{K}{N} \sum_{j=1}^{N}\left(c_{i} s_{j}-s_{i} c_{j}\right)=0, \text { for } i=1, \ldots, N \\
& s_{i}^{2}+c_{i}^{2}-1=0, \text { for } i=1, \ldots, N
\end{aligned}
$$

Complex Systems: Synchronization

The Kuramoto Model:

$$
\begin{aligned}
& \omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{i}-\theta_{j}\right)=0, \text { for } i=1, \ldots, N \\
& \sin \theta_{i}:=s_{i} \quad \cos \theta_{i}:=c_{i} \\
& \omega_{i}+\frac{K}{N} \sum_{j=1}^{N}\left(c_{i} s_{j}-s_{i} c_{j}\right)=0, \text { for } i=1, \ldots, N \\
& s_{i}^{2}+c_{i}^{2}-1=0, \text { for } i=1, \ldots, N
\end{aligned}
$$

Polynomial equations \rightarrow Algebraic Geometry \rightarrow Computations

An Example

$$
\begin{array}{r}
x z-3 y+1=0 \\
x^{2}-2 y=0 \\
x y-5=0
\end{array}
$$

Solve for x, y, z.

Two methods:
1.Groebner Basis Method
2.Numerical Algebraic Geometry

Groebner Basis

- Very roughly speaking, one can obtain another system of polynomial equations by performing a finite set of operations on the original system (the Buchberger algorithm with lexicographic monomial ordering)
- The new system is 'easier' to solve
- The new system has the same solutions as the original
- The new system is called the Groebner basis
- Packages like Singular, COCOA, MACAULAY2, MAGMA, Maple, Mathematica, etc.
- The first three are available for free !!

How is it useful?

For the running example, Mathematica gives (lexicographic monomial ordering)

$$
\begin{array}{r}
x^{3}-10=0 \\
-x^{2}+2 y=0 \\
x^{2}-15 x+10 z=0
\end{array}
$$

How is it useful?

For the running example, Mathematica gives (lexicographic monomial ordering)

$$
\begin{array}{rlr}
x^{3}-10 & =0 & \begin{array}{l}
\text { Univariate equation. } \mathbf{3} \\
\text { solutions. }
\end{array} \\
-x^{2}+2 y & =0 &
\end{array}
$$

How is it useful?

For the running example, Mathematica gives (lexicographic monomial ordering)

$$
\begin{aligned}
x^{3}-10 & =0 \\
-x^{2}+2 y & =0 \\
x^{2}-15 x+10 z & =0
\end{aligned} \begin{aligned}
& \text { Univariate equation. } 3 \\
& \text { solutions. }
\end{aligned}
$$

How is it useful?

For the running example, Mathematica gives (lexicographic monomial ordering)

$$
\left.\begin{array}{rl}
x^{3}-10 & =0 \\
-x^{2}+2 y & =0
\end{array} \begin{array}{l}
\text { Univariate equation. } 3 \\
\text { solutions. }
\end{array}\right] \begin{aligned}
& \text { Back-substitute the three } \\
& \text { solutions in the rest of the system }
\end{aligned}
$$

There are $\mathbf{3}$ solutions: 1 real + $\mathbf{2}$ complex

Numerical Algebraic Geometryl Homotopy Continuation Method

1. Estimate an upper bound of the number of solutions of the system to be solved.
e.g.,

Bezout bound = product of degrees of all the polynomials in the system. $=2 \times 2 \times 2=8$, for our running example

$$
\vec{f}(x, y, z)=\left(x z-3 y+1, x^{2}-2 y, x y-5\right)^{T}
$$

Numerical Algebraic Geometryl
 Homotopy Continuation Method

1. Estimate an upper bound of the number of solutions of the system to be solved.
e.g.,

Bezout bound = product of degrees of all the polynomials in the system. $=2 \times 2 \times 2=8$, for our running example

$$
\vec{f}(x, y, z)=\left(x z-3 y+1, x^{2}-2 y, x y-5\right)^{T}
$$

2. Construct a new system in the same variables
(a) which has the same no. of solutions as the estimated upper bound, (b) easy to solve
e.g.,

$$
\vec{g}(x, y, z)=\left(x^{2}-1, y^{2}-1, z^{2}-1\right)^{T}
$$

Numerical Algebraic Geometryl
 Homotopy Continuation Method

1. Estimate an upper bound of the number of solutions of the system to be solved.
e.g.,

Bezout bound = product of degrees of all the polynomials in the system.
$=2 \times 2 \times 2=8$, for our running example

$$
\vec{f}(x, y, z)=\left(x z-3 y+1, x^{2}-2 y, x y-5\right)^{T}
$$

2. Construct a new system in the same variables
(a) which has the same no. of solutions as the estimated upper bound,
(b) easy to solve
e.g.,

$$
\vec{g}(x, y, z)=\left(x^{2}-1, y^{2}-1, z^{2}-1\right)^{T}
$$

3. Track each solution of the new system using

$$
\vec{H}((x, y, z), t)=(1-t) \vec{f}(x, y, z)+e^{i \gamma} t \vec{g}(x, y, z)=0
$$

from $t=1$ to $t=0$, using predictor-corrector or any other method.
If a solution of the new system converges to the original one at $t=0$, then it is a solution, otherwise not.
Note that 'gamma' is a generic real number, and is important here.

Numerical Algebraic Geometryl Homotopy Continuation Method

This page contains no technical data subject to the EAR or the ITAR.

Numerical Algebraic Geometryl Homotopy Continuation Method

There are well-written packages available for free:
Bertini, HOM4PS2, PHCPack.

Groebner Basis

1. Exact solutions
2. Exponential space complexity
3. Highly sequential
4. Non-integer coefficients a problem

Numerical Algebraic Geometry

Numerical, but ALL solutions/extrema

No such scaling problems
‘Embarrassingly’ parallelizable

Floating point coefficients are fine

Groebner Basis

1. Exact solutions
2. Exponential space complexity
3. Highly sequential
4. Non-integer coefficients a problem

Numerical Algebraic Geometry

Numerical, but ALL solutions/extrema

No such scaling problems
‘Embarrassingly’ parallelizable

Floating point coefficients are fine

NAG: Framework rather than a method

Groebner Basis

1. Exact solutions
2. Exponential space complexity
3. Highly sequential
4. Non-integer coefficients a problem

Numerical Algebraic Geometry

Numerical, but ALL solutions/extrema

No such scaling problems
‘Embarrassingly’ parallelizable

Floating point coefficients are fine

NAG: Framework rather than a method

Caution: The Groebner basis methods can work exceptionally well in many cases (e.g., Sudoku) ...

Complex Systems: Synchronization

Solve (DM, Noah Daleo, Jonathan D Hauenstein, Florian Doerfler):

$$
\begin{aligned}
\omega_{i}+\frac{K}{N} \sum_{j=1}^{N}\left(c_{i} s_{j}-s_{i} c_{j}\right) & =0, \text { for } i=1, \ldots, N \\
s_{i}^{2}+c_{i}^{2}-1 & =0, \text { for } i=1, \ldots, N
\end{aligned}
$$

Complex Systems: Synchronization (For equidistant frequencies)

DM, Noah Daleo, Jonathan D Hauenstein, Florian Doerfler. 2015.

Complex Systems: Synchronization (For equidistant frequencies)

DM, Noah Daleo, Jonathan D Hauenstein, Florian Doerfler. 2015.

Complex Systems: Synchronization (For equidistant frequencies)

Conjecture [Araposthatis et al., 1981]: if there is a stable equilibrium, then there is a stable equilibrium with

$$
\left|\theta_{i}-\theta_{j}\right|<\frac{\pi}{2}, \text { for all neighbours } i, j
$$

Complex Systems: Synchronization (For equidistant frequencies)

Conjecture [Araposthatis et al., 1981]: if there is a stable equilibrium, then there is a stable equilibrium with

$$
\left|\theta_{i}-\theta_{j}\right|<\frac{\pi}{2}, \text { for all neighbours } i, j
$$

Disproved by counter-example.

Complex Systems: Synchronization (For equidistant frequencies)

Conjecture [Araposthatis et al., 1981]: if there is a stable equilibrium, then there is a stable equilibrium with

$$
\left|\theta_{i}-\theta_{j}\right|<\frac{\pi}{2}, \text { for all neighbours } i, j
$$

Disproved by counter-example.

- Other results for the complete graph
- Results for other graphs (cyclic, Erdos-Renyi random graph, etc.)
- In future, other graphs, eigenvalue analysis, stochastic versions of the Kuramoto model

Power Flow Problem

- In addition to the Kuramoto model
- Power flow equations: flow of power in an interconnected system

$$
\begin{aligned}
& 0=-P_{i}+\sum_{k=1}^{n} G_{i k}\left(V_{i R e} V_{k R e}+V_{i I m} V_{k I m}\right)+\sum_{k=1}^{n} B_{i k}\left(V_{k R e} V_{i I m}-V_{i R e} V_{k I m}\right) \\
& 0=Q_{i}+\sum_{k=1}^{n} G_{i k}\left(V_{k R e} V_{i I m} \quad V_{i R e} V_{k I m}\right) \sum_{k=1}^{n} B_{i k}\left(V_{i R e} V_{k R e}+V_{i I m} V_{k I m}\right)
\end{aligned}
$$

- B (real part of the bus admittance matrix), G (imaginary part of the bus admittance matrix), P (net power injected) and Q (net reactive power injected) are parameters.
- Solutions are important for determining the best operation of the system as well as planning future expansions on the system, etc.

Power Flow Problem

- Found all the steady states for up to $\boldsymbol{n}<=14$ bus system (IEEE test systems) DM, K Turitsyn and H Nguyen, 2014. The first ever complete database of equilibria.
- Multistability in wind energy systems. S Chandra, DM, A Chakrabortty. 2014, 2015, 2016.
- Network topology dependent upper bound on the number of power flow equilibria. DM, T Chen, D Molzahn, M Niemerg. 2015, 2016.

Current and Future Works

- Further work on graph topology dependent upper bounds on both complex and real power flow and Kuramoto equilibria
- Novel computational algebraic geometry methods such as discriminant variety to identify all the solution-boundaries (where the Jacobian is singular)
- Novel (non-polynomial) and tailor-made homotopy continuation methods to find stable and type-1 solutions
- Dynamical systems on graphs
- Optimal Power Flow Problem with polynomial homotopy continuation
- Machine learning (artificial neural networks and deep learning)
- Belief Propagation (probabilistic graphical models), etc.
- Computer vision.

