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Power networks and electrical grids.
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Neural network synchronization
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Complex Systems: Synchronization

The Kuramoto Model:

i.e. the frequency without the presence of the sine 
terms.

- Each oscillator (firefly) knows what all other oscillators are 
doing, called the complete graph.

- One can also have other more realistic graphs, e.g., random, 
cyclic, small-world, etc.
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Complex Systems: Synchronization

The Kuramoto Model:

i.e. the frequency without the presence of the sine 
terms.

- 'K' is the strength/amount of knowledge about other oscillators.

- In this set up, each oscillator has the same amount of knowledge 
about others as all others.

- One can also have a setup with different values of K for each 
pair of oscillators and so on.
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The Kuramoto Model:

- when K=0, all oscillators oscillate with their natural frequencies

- increasing K from 0, the oscillators start working together

- but only at a particular value of K, they are synchronized
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- But the finite size case has been very difficult so far, though it is 
more realistic: finite no. of fireflies, neurons, nodes in the power 
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Complex Systems: Synchronization

The Kuramoto Model:

- Many exact results available for

- But the finite size case has been very difficult so far, though it is 
more realistic: finite no. of fireflies, neurons, nodes in the power 
networks, etc.
- For finite N: run the dynamical system (solve the ODEs from random 
initial conditions)

Problems: 1. Dependent on initial conditions
    2. multiple stable steady states

                  3. Dependent on step size
                  4. No stable steady state?
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Complex Systems: Synchronization

The Kuramoto Model:

A different mathematical set up of the problem:

● Find the first instance of K, starting from K=0, for which the below 
system has at least one stable steady state.
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Complex Systems: Synchronization

The Kuramoto Model (power flow equations for lossless network with all 
nodes being PV nodes):
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Complex Systems: Synchronization

The Kuramoto Model:

Polynomial equations → Algebraic Geometry → Computations
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An Example

Two methods:

1.Groebner Basis Method 

2.Numerical Algebraic Geometry
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• Very roughly speaking, one can obtain another system of polynomial 
equations by performing a finite set of operations on the original system 
(the Buchberger algorithm with lexicographic monomial ordering)

• The new system is ‘easier’ to solve

• The new system has the same solutions as the original 

• The new system is called the Groebner basis

• Packages like Singular, COCOA, MACAULAY2, MAGMA, Maple, 
Mathematica, etc.

• The first three are available for free !!

Groebner Basis
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How is it useful?
For the running example, Mathematica gives (lexicographic monomial 
ordering)
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How is it useful?
For the running example, Mathematica gives (lexicographic monomial 
ordering)

Univariate equation. 3 
solutions.

Back-substitute the three 
solutions in the rest of the system

There are 3 solutions: 1 real + 2 complex
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Numerical Algebraic Geometry/ 
Homotopy Continuation Method

1. Estimate an upper bound of the number of solutions of the system to be 
solved.
e.g.,
Bezout bound = product of degrees of all the polynomials in the system.
                       =  2x2x2 = 8, for our running example
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Numerical Algebraic Geometry/ 
Homotopy Continuation Method

1. Estimate an upper bound of the number of solutions of the system to be 
solved.
e.g.,
Bezout bound = product of degrees of all the polynomials in the system.
                       =  2x2x2 = 8, for our running example

2. Construct a new system in the same variables
    (a) which has the same no. of solutions as the estimated upper bound,
    (b) easy to solve
     e.g., 

3. Track each solution of the new system using

     from t=1 to t=0, using predictor-corrector or any other method. 
If a solution of the new system converges to the original one at t=0, then it 
is a solution, otherwise not.
Note that ‘gamma’ is a generic real number, and is important here.     
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Numerical Algebraic Geometry/ 
Homotopy Continuation Method
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Numerical Algebraic Geometry/ 
Homotopy Continuation Method

There are well-written packages available for free:

Bertini, HOM4PS2, PHCPack.
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Groebner Basis            Numerical Algebraic Geometry

1. Exact solutions     Numerical, but ALL solutions/extrema

2. Exponential space complexity      No such scaling problems

3. Highly sequential     ‘Embarrassingly’ parallelizable

4. Non-integer coefficients a      Floating point coefficients are fine
problem    
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Groebner Basis            Numerical Algebraic Geometry

1. Exact solutions     Numerical, but ALL solutions/extrema

2. Exponential space complexity      No such scaling problems

3. Highly sequential     ‘Embarrassingly’ parallelizable

4. Non-integer coefficients a      Floating point coefficients are fine
problem    

NAG: Framework rather than a method

Caution: The Groebner basis methods can work exceptionally well in 
many cases (e.g., Sudoku) ...
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Complex Systems: Synchronization

Solve (DM, Noah Daleo, Jonathan D Hauenstein, Florian Doerfler):
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Complex Systems: Synchronization
       (For equidistant frequencies)

DM, Noah Daleo, Jonathan D Hauenstein, Florian Doerfler. 2015.
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Conjecture [Araposthatis et al., 1981]: if there is a stable equilibrium, then 
there is a stable equilibrium with
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Complex Systems: Synchronization
       (For equidistant frequencies)

Conjecture [Araposthatis et al., 1981]: if there is a stable equilibrium, then 
there is a stable equilibrium with

Disproved by counter-example.
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Complex Systems: Synchronization
       (For equidistant frequencies)

Conjecture [Araposthatis et al., 1981]: if there is a stable equilibrium, then 
there is a stable equilibrium with

Disproved by counter-example.

• Other results for the complete graph

• Results for other graphs (cyclic, Erdos-Renyi random graph, etc.)

• In future, other graphs, eigenvalue analysis, stochastic versions of the 
Kuramoto model
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Power Flow Problem
- In addition to the Kuramoto model

- Power flow equations: flow of power in an interconnected system

- B (real part of the bus admittance matrix), G (imaginary part of the bus 
admittance matrix), P (net power injected) and Q (net reactive power 
injected) are parameters.

- Solutions are important for determining the best operation of the system 
as well as planning future expansions on the system, etc.
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Power Flow Problem

- Found all the steady states for up to n <=14 bus system (IEEE test systems) 
DM, K Turitsyn and H Nguyen, 2014. The first ever complete database of 
equilibria.

- Multistability in wind energy systems. S Chandra, DM, A Chakrabortty. 2014, 
2015, 2016.

- Network topology dependent upper bound on the number of power flow 
equilibria. DM, T Chen, D Molzahn, M Niemerg. 2015, 2016.
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Current and Future Works

- Further work on graph topology dependent upper bounds on both complex and 
real power flow and Kuramoto equilibria

- Novel computational algebraic geometry methods such as discriminant variety 
to identify all the solution-boundaries (where the Jacobian is singular)

- Novel (non-polynomial) and tailor-made homotopy continuation methods to find 
stable and type-1 solutions

- Dynamical systems on graphs

- Optimal Power Flow Problem with polynomial homotopy continuation

- Machine learning (artificial neural networks and deep learning)

- Belief Propagation (probabilistic graphical models), etc. 

- Computer vision.
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