Modeling and Control of Unstable Physical Human-Machine Interactions: A Rider-Bikebot Example

Professor Jingang Yi

Department of Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey Piscataway, New Jersey 08854

April 16, 2018

Research Interests

Research Areas

- Applied control theory (nonlinear, adaptive, and hybrid control systems)
- Mechatronic systems
- Design and automation
- Dynamic systems

Applications Areas

- Robotics and vehicle systems
- Biomedical and biological systems
- Civil infrastructure, transportation, and oceanic systems
- Micro- and nano-manufacturing systems

Recent Research Projects

Robotic/vehicular systems

- Autonomous robots and vehicles
- Contact modeling/tactile sensing
- Underwater robotics

Physical human-robot interactions

- Human-bikebot interactions
- Robotic assistive slip-and-fall
- Wearable robotic assistive devices
- **3** Automation science & engineering
 - Civil infrastructure automation
 - Micro-/nano-manufacturing automation

Autonomous Motorcycles/Bicycles

Why Are We Interested in Rider-Bicycle Interactions?

Biking but no walking	
	Rutgers rehabilitation bicycle
Snijders and Bloem, "Freezing of gait", New England	
L of Medicine vol. 362 e46 2010	

Motivation

- Rider-bicycle (or bicycle-based robot, i.e., bikebots) interaction is used as a new paradigm to study unstable physical human-machine interactions (pHMI)
 - Physically unstable, especially under a slow moving velocity
 - Coordinated multi-limbs and body movements for balancing
 - Multiple contact points for complex interactions and constraints
- Bicycling can potentially serve as a rehabilitation tool for postural balance disabilities
 - Possibly treating Parkinson's disease patients (Aerts *et al.* (2011) and Ridgel *et al.* (2009))

Motivation

- Rider-bicycle (or bicycle-based robot, i.e., bikebots) interaction is used as a new paradigm to study unstable physical human-machine interactions (pHMI)
 - Physically unstable, especially under a slow moving velocity
 - Coordinated multi-limbs and body movements for balancing
 - Multiple contact points for complex interactions and constraints
- Bicycling can potentially serve as a rehabilitation tool for postural balance disabilities
 - Possibly treating Parkinson's disease patients (Aerts *et al.* (2011) and Ridgel *et al.* (2009))

Challenges

- Capturing and modeling high-dimensional pHMI
- Analyzing and quantifying the human balance motor skills in pHMI
- Tuning and controlling the pHMI

Bikebot Systems Development

Actively Controlled Physical Human-Bicycle Interactions

- A flywheel gyro-balancer to create perturbation balancing torques
- Independently controlled steering and pedaling mechanisms
- Wearable/onboard sensors to estimate the human and bicycle poses

Objectives

- Developing a modeling framework to capture the high-dimensional human motion in pHMI with applications to pose estimation
- Quantifying human balance motor skills and comparing with autonomous control design
- Stability and balance control of the physical rider-bicycle interactions

Objectives

- Developing a modeling framework to capture the high-dimensional human motion in pHMI with applications to pose estimation
- Quantifying human balance motor skills and comparing with autonomous control design
- Stability and balance control of the physical rider-bicycle interactions

Outline

- **Part I:** Physical-learning modeling framework of the physical rider-bikebot interactions
- Part II: Quantifying human balance motor skills and autonomous control design
- Part III: Stability and control of the rider-bikebot interactions

Part I

Physical-learning modeling framework of physical rider-bicycle interactions

Background

- Physical human-machine interactions (pHMI) play a critical role for many human-centered design, e.g., robotic assistive and rehabilitation devices
- Modeling and control of pHMI is challenging
 - Highly-dimensional human motion and complex interactions
 - Lack of effective modeling tools
 - Sophisticated human-in-the-loop neuro-control

Background

- Physical human-machine interactions (pHMI) play a critical role for many human-centered design, e.g., robotic assistive and rehabilitation devices
- Modeling and control of pHMI is challenging
 - Highly-dimensional human motion and complex interactions
 - Lack of effective modeling tools
 - Sophisticated human-in-the-loop neuro-control
- Some existing approaches
 - Physical principles-based modeling → Complex for controller design
 - Learning from demonstration (e.g., data-driven models) → Lack of physical interpretation

• The model $\Sigma_{pl} = \Sigma_{tr} \times \Sigma_{du} \times \Sigma_{dl}$, Σ_{tr} : trunk-robot dynamics, Σ_{du} , Σ_{dl} : upper- and lower-limb dynamics

- The model $\Sigma_{pl} = \Sigma_{tr} \times \Sigma_{du} \times \Sigma_{dl}$, Σ_{tr} : trunk-robot dynamics, Σ_{du} , Σ_{dl} : upper- and lower-limb dynamics
- Physical models for \sum_{tr} \rightarrow motions with physical sensing information

- The model $\Sigma_{pl} = \Sigma_{tr} \times \Sigma_{du} \times \Sigma_{dl}$, Σ_{tr} : trunk-robot dynamics, Σ_{du} , Σ_{dl} : upper- and lower-limb dynamics
- Physical models for \sum_{tr} \rightarrow motions with physical sensing information
- A learning model for ∑_{du}/∑_{dl} → reduced-dimensional dynamics on manifolds without sensing

• The model $\Sigma_{pl} = \Sigma_{tr} \times \Sigma_{du} \times \Sigma_{dl}$, Σ_{tr} : trunk-robot dynamics, Σ_{du} , Σ_{dl} : upper- and lower-limb dynamics

- Physical models for \sum_{tr} \rightarrow motions with physical sensing information
- A learning model for ∑_{du}/∑_{dl} → reduced-dimensional dynamics on manifolds without sensing
- Integrating the physical-learning models with interactions/constraints

Physical Trunk-Bikebot Dynamics

- Generalized coordinates: the trunk $\boldsymbol{q}_t = [\varphi_h \ \theta \ \phi_h]^T$, bikebot $\boldsymbol{q}_r = \varphi_b$, and $\boldsymbol{q}_{tr} = [\boldsymbol{q}_t^T \ \boldsymbol{q}_r^T]^T$
- The trunk-bikebot dynamics is obtained by Lagrange equations as

$$\boldsymbol{M}(\boldsymbol{q}_{tr})\ddot{\boldsymbol{q}}_{tr} + \boldsymbol{C}(\boldsymbol{q}_{tr},\dot{\boldsymbol{q}}_{tr})\dot{\boldsymbol{q}}_{tr} + \boldsymbol{G}(\boldsymbol{q}_{tr}) = \boldsymbol{u}_t$$

• Input $\boldsymbol{u}_t = \begin{bmatrix} (\sec^2 \varphi_b) g \boldsymbol{u}_s - \tau_h & \tau_h \end{bmatrix}^T$, τ_h and τ_{θ} : torques applied by the rider to the trunk

- Nonholonomic constraint at rear wheel contact point C_2
- Velocity v_{rx} and yaw angle ψ as time-varying model parameters
- Steering control $u_{\psi} := \ddot{\psi} = \frac{v_r c_{\xi}}{l c_{\varphi}} \left(\sec_{\phi}^2 \dot{\phi} + \tan \phi \tan \varphi \dot{\varphi} \right) + \frac{\dot{v}_r \tan \phi c_{\xi}}{l c_{\varphi}}.$

Learning Model for Limb Motion

- Key idea: high-dimensional human joint angle motion $y \in \mathbb{R}^D$ to low-dimensional latent space dynamics $x \in \mathbb{R}^d$, $D \gg d$
 - Linear latent dynamics not work for human motion
 - Commonly used dimension reduction method (e.g., principal component analysis (PCA), locally linear embedding (LLE))
 - The latent dynamics can incorporate and integrate with physical models

Learning Model for Limb Motion

- Key idea: high-dimensional human joint angle motion $y \in \mathbb{R}^D$ to low-dimensional latent space dynamics $x \in \mathbb{R}^d$, $D \gg d$
 - Linear latent dynamics not work for human motion → Need nonlinear latent dynamics
 - Commonly used dimension reduction method (e.g., principal component analysis (PCA), locally linear embedding (LLE)) →
 Cannot preserve the physical interpretation
 - The latent dynamics can incorporate and integrate with physical models → Interconnect as inputs and constraints to the model

Learning Model for Limb Motion

- Key idea: high-dimensional human joint angle motion $y \in \mathbb{R}^D$ to low-dimensional latent space dynamics $x \in \mathbb{R}^d$, $D \gg d$
 - Linear latent dynamics not work for human motion → Need nonlinear latent dynamics
 - Commonly used dimension reduction method (e.g., principal component analysis (PCA), locally linear embedding (LLE)) →
 Cannot preserve the physical interpretation
 - The latent dynamics can incorporate and integrate with physical models → Interconnect as inputs and constraints to the model

Main Approach

- Gaussian process dynamic model (GPDM) for low-dimensional limb motion with inputs/constraints from the physical model
- A novel **axial linear embedding (ALE)** dimensional-reduction method preserving physical interpretation

Nonlinear Learning Model for Human Limb Motion

• Gaussian process dynamical model (GPDM): A nonlinear dynamics between the high-dimensional joint angles $y \in \mathbb{R}^D$ and the low-dimensional latent variables $x \in \mathbb{R}^d$ $(d \ll D)$ for limb motion

$$\begin{split} \delta \boldsymbol{x}(k) &= \boldsymbol{x}(k) - \boldsymbol{x}(k-1) = \boldsymbol{f}(\boldsymbol{x}(k-1), \boldsymbol{u}_h(k-1), \boldsymbol{\alpha}) + \boldsymbol{w}_p, \\ \boldsymbol{y}(k) &= \boldsymbol{g}(\boldsymbol{x}(k), \boldsymbol{\beta}) + \boldsymbol{w}_o, \end{split}$$

 $\pmb{\alpha},\,\pmb{\beta}$ are parameters, input $\pmb{u}_h(k-1)$ from the trunk-robot subsystems.

• $X = \{x(k)\}^N$, $Y = \{y(k)\}^N$ and $U = \{u_h(k)\}^N$ as training data sets, estimate f and g by identifying α and β and maximizing a-posterior distribution

 $P(\boldsymbol{X}, \boldsymbol{\alpha}, \boldsymbol{\beta} | \boldsymbol{Y}, \boldsymbol{U}) \propto P(\boldsymbol{Y} | \boldsymbol{X}, \boldsymbol{\beta}) P(\boldsymbol{X} | \boldsymbol{U}, \boldsymbol{\alpha}) P(\boldsymbol{\alpha}) P(\boldsymbol{\beta}).$

Dimensional Reduction and Initialization – ALE Algorithm

- Axial linear embedding (ALE) for
 - Preserving the physical interpretation of the latent variables
 - Maintaining performance and avoiding trapping at local minimums
- Limb motion is influenced by trunk and steering movements
- Determine three limb motion primitives by three templates of trunk-robot motion q_{tr} (Lines 2-3)
- Arbitrary limb motion is decomposed along three-motion-primitive directions in the latent space (Lines 4-6)

ALE Algorithm Flowchart

Algorithm 1: Axial Linear Embedding (ALE)

$$\begin{aligned} & \text{for } j = 1 \text{ to } n_{rt} \text{ do} \\ & \text{I} \qquad \mathbf{q} = \mathbf{q}_{rt}^{e}; \mathbf{y} = \mathbf{y}^{e}; \\ & \text{Perturb } \mathbf{q} \text{ along the } j\text{th template of } \mathscr{T}_{rt} \text{ and obtain} \\ & \text{limb motion} \{\mathbf{y}_{l}\}_{\mathbf{q}_{rt}^{i}} = \text{PCA}_{1}(\{\mathbf{y}_{l}\}_{\mathbf{q}_{i}}); \\ & \text{and} \\ & \text{for } k = 1 \text{ to } N \text{ do} \\ & \text{for } k = 1 \text{ to } N \text{ do} \\ & \text{smallest value for } \mathbf{y}_{k_{i}} \in \cup_{j=1}, \dots, n_{rt} \{\mathbf{y}_{l}\}_{\mathbf{q}_{rt}^{i}}; \\ & \text{s} \qquad \mathbf{w}_{k_{i}} = \arg\min_{\mathbf{w}_{k_{i}}} \|\mathbf{y}(k) - \sum_{i=1}^{M} \mathbf{w}_{k_{i}} \mathbf{y}_{k_{i}}\|_{2}^{2}, \sum_{i=1}^{M} \mathbf{w}_{k_{i}} = 1; \\ & \text{c} \qquad \mathbf{x}(k) = \sum_{i=1}^{M} \mathbf{w}_{k_{i}} \mathbf{x}_{k_{i}} \text{ is the latent coordinate of } \mathbf{y}_{k_{i}}; \\ & \text{end} \end{aligned}$$

Modeling Application: Limb Motion Estimation

- Each upper-limb is modeled as five degree-of-freedom (DOF): shoulder joint angles (y_1, y_2, y_3) (left)/ (y_6, y_7, y_8) (right) and elbow joint angles (y_4, y_5) (left)/ (y_9, y_{10}) (right), i.e., D = 10.
- The upper-limb poses primarily influenced by three trunk-bikebot motion templates: trunk roll, pitch motions and the bikebot steering motion, i.e., d = 3.
- Latent dynamics input $\boldsymbol{u}_h = [\phi(t) \ \dot{\phi}(t) \ \boldsymbol{q}_t^T(t) \ \dot{\boldsymbol{q}}_t^T(t)]^T$
- Only trunk and bikebot gyroscope sensors are used in the design (No wearable sensors on limbs)
- Extended Kalman filter (EKF) is used to fuse the gyroscope measurements and a set of geometric and dynamic constraints

Experiments and Motion Kinematics/Constraints

(a)-(b) Riding experiment and trajectory. (c)-(e) Bikebot/trunk gyroscopes and optical markers.

Motion Kinematics and Rider-Bikebot Geometric/Dynamic Constraints

- Gyroscopes motion: $\dot{\varphi}_b = [c_\alpha \ 0 \ s_\alpha] \boldsymbol{\omega}_r$, $\dot{\boldsymbol{q}}_t = \boldsymbol{f}_2(\boldsymbol{q}_{tr}; \boldsymbol{\omega}_r, \boldsymbol{\omega}_t)$
- Dynamic constraint: first 2 equations in dynamics $z_1(\boldsymbol{q}_{tr}, \dot{\boldsymbol{q}}_{tr}, \ddot{\boldsymbol{q}}_{tr}) = 0$
- Geometric constraints: human anatomical and pHMI interactions
 - Trunk, limb and bikebot forms closed structure $m{z}_2(m{q}_t,m{y}) = m{0} \in \mathbb{R}^6$
- EKF design: state: $m{v} = [m{q}_{tr}^T \ m{x}^T]^T \in \mathbb{R}^7$, output: $m{y} \in \mathbb{R}^{10}$ and $\hat{m{q}}_{tr}$.

Results - Single-Subject Experiment

Results – Single-Subject Experiment

Root mean square (RMS) errors (in degs) of EKF design

100									
80.	GPDM	φ_h	θ	ϕ_h	φ_b	y_1	y_2	y_3	Å
de 40 40 40 40 40 40 40 40 40 40 40 40 40	ALE	5.0 ± 1.4	1.4 ± 0.5	5.1 ± 0.3	0.5 ± 0.1	2.2 ± 0.3	2.8 ± 0.1	4.9 ± 1.1	Â
	PCA	5.2 ± 1.9	1.5 ± 0.5	5.1 ± 0.6	0.5 ± 0.1	2.3 ± 0.4	2.9 ± 0.5	4.6 ± 0.5	1
-20	LLE	5.4 ± 0.1	1.5 ± 0.3	5.8 ± 1.2	0.5 ± 0.2	3.3 ± 1.2	3.3 ± 0.8	6.1 ± 1.8	Ŀ
	IMU	3.2	4.6	3.5	0.7	4.9	4.7	3.0	
100	GPDM	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}	
$y_1 \left(deg \\ g \\ \mathsf{$	ALE	4.5 ± 0.4	4.2 ± 0.8	1.9 ± 0.7	3.9 ± 0.3	4.1 ± 0.5	5.0 ± 1.2	3.1 ± 0.3	
	PCA	5.0 ± 0.2	5.3 ± 0.9	2.4 ± 0.8	4.5 ± 0.9	4.7 ± 0.5	5.1 ± 0.8	4.1 ± 0.4	
60	LLE	9.1 ± 0.3	7.3 ± 0.5	2.8 ± 0.6	5.6 ± 2.5	8.5 ± 3.1	6.2 ± 1.3	5.0 ± 1.5	
50	IMU	4.7	4.8	4.7	5.2	4.3	4.8	5.2	
Observations									

- The ALE algorithm outperforms both the PCA and LLE
- The model predictions have the similar error level as using wearable IMUs

RMS errors (in degs) over 1-minute indoor/outdoor experiments

	φ_h	θ	ϕ_h	φ_b	y_1	y_2	y_3
Indoor	6.4 ± 1.8	1.5 ± 0.2	7.6 ± 3.1	0.6 ± 0.2	2.6 ± 0.3	4.2 ± 0.9	5.9 ± 0.9
Outdoor	7.7 ± 1.0	2.0 ± 0.7	9.6 ± 0.4	0.8 ± 0.2	2.9 ± 0.3	4.9 ± 0.7	6.4 ± 0.9
	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}
Indoor	5.3 ± 0.8	5.1 ± 0.7	2.8 ± 0.5	4.4 ± 1.2	3.9 ± 0.2	5.6 ± 0.1	3.0 ± 0.4
Outdoor	6.0 ± 2.0	5.2 ± 0.5	2.9 ± 0.4	4.7 ± 0.8	4.5 ± 1.3	6.3 ± 1.1	3.1 ± 0.5

Remarks

- The results are still comparable with those by wearable sensors ^a
- Indoor experiment results are slightly better than these of outdoor

^aZhang et al., IROS'2014; Lu et al., IROS'2014.

Result Analysis

Observations

Dynamic/geometric pHMI constraints enhances the estimation results
A small size of training data is enough for building the model

Summary

- Built a nonlinear learning model to capture the high-dimensional limb motion on the lower-dimensional manifolds
- Proposed an integrated physical-learning model for studying pHMI interactions
 - The compact model is attractive for pHMI control design
 - The ALE algorithm preserves the physical meaning of the latent variables
- Validated and demonstrated pose-estimation performance by extensive indoor/outdoor experiments

Part II

Quantifying human balance motor skills and autonomous control design

Objectives and Approaches

Objectives

- Analyze the contributions of balance by upper-body movement and steering actuation
- Define metrics to quantify tracking and balancing performance
- Model human path-following strategy and compare with autonomous control

Objectives and Approaches

Objectives

- Analyze the contributions of balance by upper-body movement and steering actuation
- Define metrics to quantify tracking and balancing performance
- Model human path-following strategy and compare with autonomous control

Approaches

- Rider-bikebot dynamics and external/internal convertible (EIC) structure
- Define and use the balance equilibrium manifold (BEM)
- BEM-based path-following controller design and comparison with human rider control
- Introduce BEM-based balance and path-following metrics

Nearly EIC Nonlinear Dynamic Systems

 An n(= m + p)-dimensional nonlinear system is called in a nearly external/internal convertible (EIC) form if the system is of the form

$$\Sigma: \begin{cases} \dot{x}_i = x_{i+1}, \ \dot{x}_m = u, i = 1, \cdots, m-1, \\ \dot{\alpha}_j = \alpha_{j+1}, \\ \dot{\alpha}_p = f(\boldsymbol{x}, \boldsymbol{\alpha}) + g(\boldsymbol{x}, \boldsymbol{\alpha})u + g_i(\boldsymbol{x}, \boldsymbol{\alpha})u_i, \\ y = x_1, \ j = 1, \cdots, p-1, \end{cases}$$

with $u, u_i, y \in \mathbb{R}$, $\boldsymbol{x} = [x_1 \cdots x_m]^T \in \mathbb{R}^m$ and $\boldsymbol{\alpha} = [\alpha_1 \cdots \alpha_p]^T \in \mathbb{R}^p$.

- The external and internal subsystems are $\Sigma_{\text{ext}}: \dot{x}_i = x_{i+1}, \dot{x}_m = u, i = 1, \dots, m-1, \text{ and}$ $\Sigma_{\text{int}}: \dot{\alpha}_i = \alpha_{i+1}, \dot{\alpha}_p = f(\boldsymbol{x}, \boldsymbol{\alpha}) + g(\boldsymbol{x}, \boldsymbol{\alpha})u + g_i(\boldsymbol{x}, \boldsymbol{\alpha})u_i$ for $i = 1, \dots, p-1.$
- System Σ is convertible because Σ_{int} is nearly converted to Σ_{ext} (with additional u_i), and Σ_{ext} is nearly converted to Σ_{int} (with u_i term) under $u = g(\boldsymbol{x}, \boldsymbol{\alpha})^{-1} [v - f(\boldsymbol{x}, \boldsymbol{\alpha})]$

Nearly EIC Property for the Rider-Bikebot System

• Nearly EIC form for the rider-bikebot system

$$egin{aligned} \Sigma_{ ext{ext}}:\, m{r}_{C_2}^{(3)} &= m{u}_N, \ \Sigma_{ ext{int}}:\, \ddot{m{q}} &= m{M}^{-1}(m{q}) [m{B}(m{q}) m{R}_\psi^{-1} m{\Psi} - m{C}(m{q}, \dot{m{q}}) - & \ m{G}(m{q}) + m{u}_i + m{B}(m{q}) m{R}_\psi^{-1} m{u}_N]. \end{aligned}$$

• External subsystem: planar motion dynamics; Internal subsystem: balance dynamics.
BEM Under the Rider's Control

BEM under rider control

An 8-dimensional (X,Y)-subspace in \mathbb{R}^8 of Σ_{ext} under \boldsymbol{u}^h and $\boldsymbol{\tau}$.

$$\mathcal{E}(\boldsymbol{u}^{h},\boldsymbol{\tau}) = \left\{ (\boldsymbol{x},\boldsymbol{\alpha}) \mid \boldsymbol{q}_{e} = \boldsymbol{q}_{e}(\dot{\psi}, v_{r}, \boldsymbol{u}^{h}, \boldsymbol{\tau}), \dot{\boldsymbol{q}} = \boldsymbol{0} \right\}, \qquad (1)$$

where $\boldsymbol{x} = [\boldsymbol{r}_{C_2}^T \, \dot{\boldsymbol{r}}_{C_2}^T \, \ddot{\boldsymbol{r}}_{C_2}^T]^T$ and $\boldsymbol{\alpha} = [\boldsymbol{q}^T \, \dot{\boldsymbol{q}}^T]^T$.

Consider the internal (roll angles) equilibria, denoted as q_e , by setting $\dot{q} = \ddot{q} = 0$ in the balance dynamics, are the solutions of the algebraic equation

$$\boldsymbol{F}(\boldsymbol{q}_e,\dot{\psi},v_r,\boldsymbol{u},\boldsymbol{\tau}) = \boldsymbol{0},$$

where

$$oldsymbol{F}(oldsymbol{q},\dot{\psi},v_r,oldsymbol{u},oldsymbol{\tau},oldsymbol{u},oldsymbol{\tau}):=oldsymbol{B}(oldsymbol{q})oldsymbol{u}+oldsymbol{ au}-oldsymbol{C}_q(oldsymbol{q})-oldsymbol{G}(oldsymbol{q}).$$

Balance Effects by Body Movement and Steering Actuation

- Aim: Quantify the influence of the upper-body movement and the steering actuation on the balance task
- **Method**: Perturb the rider-bikebot systems around the BEM and compute the sensitivity factors
- ullet Taking the total derivatives of ${m F}({m q},\dot\psi,v_r,{m u},{m au})$, we obtain

$$dF_1 = \frac{\partial F_1}{\partial \varphi_b} d\varphi_b + \frac{\partial F_1}{\partial \varphi_h} d\varphi_h + \frac{\partial F_1}{\partial \dot{\psi}} d\dot{\psi} + \frac{\partial F_1}{\partial u_{\psi}} du_{\psi}.$$

For steering actuation:

$$\lambda_{\phi} = \frac{\partial F_1}{\partial \phi} = -\frac{v_r^2 c_{\xi}}{l c_{\varphi_b} c_{\phi}^2} \left(A_2 + A_4 \frac{c_{\xi} s_{\phi}}{2l c_{\varphi_b} c_{\phi}} \right).$$

For upper body leaning actuation:

$$\frac{d\varphi_b}{d\varphi_h} = -\frac{M_{12}}{M_{11}} \Longrightarrow \lambda_{\varphi_h} = \left(-\frac{\partial F_1}{\partial \varphi_b} \frac{M_{12}}{M_{11}} + \frac{\partial F_1}{\partial \varphi_h}\right).$$

Balancing by Body Movement and Steering Actuation

The torque generated by one unit of the steering angle is about five times than that by one unit of the upper-body leaning angle.

Riding Performance Metrics

• Quantify only the balancing performance by using the BEM concept

Balancing metric BM_1

$$BM_1 = F_1(\boldsymbol{q}, \dot{\psi}, v_r, \boldsymbol{u}, \boldsymbol{\tau}).$$

• Quantify both the balancing skills and the path-following performance

Balancing-tracking metric BM_2

$$BM_{2} = E_{p}\left(\boldsymbol{e}_{1}\right) + E_{q}\left(\boldsymbol{e}_{2}\right) = \boldsymbol{e}_{1}^{T}\boldsymbol{M}_{1}\boldsymbol{e}_{1} + \boldsymbol{e}_{2}^{T}\boldsymbol{M}_{2}\boldsymbol{e}_{2}.$$

where e_1 and e_2 are the position and the roll angle error vectors, respectively, and M_1 and M_2 are positive definite symmetric matrices obtained by solving the Lyapunov equations.

EIC-Based Path-Following Design

- The control goal is to follow the desired trajectory \mathcal{T} : $(X_d(t), Y_d(t))$ while keeping the platform balanced and stable
- A two-step control system design process: (1) trajectory tracking control design and (2) internal system stabilization design

Bikebot Autonomous Control w/o Assistive Gyro-Balancer

• Linear feedback control for path-following:

$$oldsymbol{u}_N^{ ext{ext}} = oldsymbol{r}_d^{(3)} - b_2 \ddot{oldsymbol{e}}_p - b_1 \dot{oldsymbol{e}}_p - b_0 oldsymbol{e}_p, \; oldsymbol{u}^{ ext{ext}} = oldsymbol{R}_\psi^{-1} \left(oldsymbol{\Psi} + oldsymbol{u}_N^{ ext{ext}}
ight),$$

where $\boldsymbol{u}^{\mathrm{ext}} = [u^{\mathrm{ext}}_r \ u^{\mathrm{ext}}_\psi]^T$ and $\boldsymbol{e}_p(t) = \boldsymbol{r}_{C_2} - \boldsymbol{r}_d$.

Balancing equilibrium manifold (BEM) concept

BEM under the external trajectory-tracking control $oldsymbol{u}^{ ext{ext}}$

$$\mathcal{E} = \left\{ (\boldsymbol{x}, \varphi_{be}) \middle| \varphi_b = \varphi_{be}(\dot{\psi}, v_r, \boldsymbol{u}^{\text{ext}}, \varphi_w), \dot{\varphi_{be}} = \dot{\varphi_{be}} = 0 \right\}$$

Linear feedback control for the BEM stabilization

$$v_{\psi}^{\text{int}} = \bar{L}_{\mathbf{N}_{ext}}^2 \varphi_{be} - a_1 \dot{e}_{\varphi_b} - a_0 e_{\varphi_b}, u_{\psi}^{\text{int}} = g_{\psi}^{-1}(\varphi_b) (J_t v_{\psi}^{\text{int}} - f(\varphi_b)).$$

where $e_{\varphi_b} = \varphi_b - \varphi_{be}$, $\dot{e}_{\varphi_b} = \dot{\varphi}_b - \dot{\varphi}_{be}$.

• The controller is: C: $u_r = u_r^{\text{ext}}, u_{\psi} = u_{\psi}^{\text{int}}, u_w = 0.$

Experiments: Dynamics Model Validation

Experimental trajectory and model validation results

(a) Bikebot riding of an "8"-shape path-following experiments. (b) Validation of the rider-bikebot balancing subsystem dynamics.

Autonomous Controllers: Straight-Line Trajectory

Autonomous Controllers: Circular Trajectory

Autonomous & Human Experiments: "8"-shape Trajectory

Rider Path-Following Experiments and Performance

- Rider's behavior closely tracks the desired equilibrium points (φ_b,φ_h)
- Similar behaviors between the human control and the EIC design

Rider Path-Following Performance

- The performance metric under the rider control is much smaller than that by the EIC control
- The overall errors in circle trajectory are much smaller than those in the "8"-shape path

Summary

- Introducing the BEM concept to capture the human balance motor skills in interactions with bikebot
- Designing EIC-based balance controller with stability analysis
- Introducing BEM-based performance metrics to quantify the balance and path-following skills
- Conducting extensive experiments to demonstrate and validate the control design and analyses

Part III

Stability and control of the physical rider-bikebot interactions

Objectives and Approaches

- Analyze stability of rider-bicycle interactions under human neuro-balancing control
 - Explain the clinical observation from control systems viewpoints
 - Provide possible design guidance for bikebot-assisted rehabilitation
 - Experimentally validate and demonstrate the human control models

Objectives and Approaches

- Analyze stability of rider-bicycle interactions under human neuro-balancing control
 - Explain the clinical observation from control systems viewpoints
 - Provide possible design guidance for bikebot-assisted rehabilitation
 - Experimentally validate and demonstrate the human control models

Approaches

- Use a human neuro-balancing control model
- Stability analysis by the results of time-delay dynamical systems
- Conducting experiments for human control models estimation and the systems stability analyses

 Capture sensorimotor mechanisms due to proprioception, vestibular and visual sensory

- Capture sensorimotor mechanisms due to proprioception, vestibular and visual sensory
- W_{p1}, W_{p2} proprioceptive weights; W_v - weight of the vestibular/visual sensory

- Capture sensorimotor mechanisms due to proprioception, vestibular and visual sensory
- W_{p1}, W_{p2} proprioceptive weights; W_v - weight of the vestibular/visual sensory
- Three time delays: the short-, medium- and long-term phasic mechanisms

- Capture sensorimotor mechanisms due to proprioception, vestibular and visual sensory
- W_{p1}, W_{p2} proprioceptive weights; W_v - weight of the vestibular/visual sensory
- Three time delays: the short-, medium- and long-term phasic mechanisms

• The human neuro-balancing torque is (s: the Laplace operator)

$$\tau_h = K_{in}(x_1 - x_3) + B_{sl}(x_2 - x_4)e^{-\tau_{sl}s} - B_v x_4 e^{-\tau_{ml}s} + (W_{p1}x_1 - W_t x_3)\left(K_p + K_d s + \frac{K_i}{s}\right)e^{-\tau_{ll}s},$$

Indoor riding experiments

Stability Analysis of the Rider-Bicycle Systems

- The rider-bicycle dynamics under the human neuro-balancing control is a three-delay system
- Steering control is needed for a stable system. A proportional steering control u_s := tan φ = k_{pd}φ_b is considered (Soudbakhsh et al. (2012))
- Stability charts to show the stability regions in the time-delay space

Clinical Implications and Discussions

- For PD patients (Kim et al. (2009), J Neurophysiol.)
 - Larger K_{in} and B_{sl} than healthy control subjects
 - Stability effect: a larger B_{sl} helps the subject stabilize the bicycle while the stability is insensitive to the stiffness K_{in}

Explanation for the FOG clinical observation

- Larger damping gain in short-latency for PD/FOG patients helps stabilize bicycle riding
- Larger intrinsic stiffness does not de-stabilize the bicycle balancing

Human Balance Riding Modeling

Upper-body torque and steering angle control models

$$\begin{aligned} \tau_h(t) &= k_{h0}\varphi_h(t) + \frac{k_{h1}}{\varphi_b}(t-\tau_1) + k_{h2}\dot{\varphi}_b(t-\tau_2) + k_{h3}\varphi_h(t-\tau_1) + k_{h4}\dot{\varphi}_h(t-\tau_2) \\ \phi(t) &= \frac{1}{v_r^2} \bigg[\frac{k_{b1}}{\varphi_b}(t-\tau_3) + k_{b2}\dot{\varphi}_b(t-\tau_4) + k_{b3}\varphi_h(t-\tau_3) + k_{b4}\dot{\varphi}_h(t-\tau_4) \bigg] \end{aligned}$$

Experimental validation

- Both control models follow the PD-structure with two time delays
- Simplified from the complete model in neuroscience literature
- The perturbed experimental data for model parameter estimation and validation

Human Balance Riding Experiments

Experiments with sensorimotor perturbation

- Three types of sensorimotor disturbances
 - Randomly balance torque disturbance
 - Visual disturbance (partially)
 - $-\,$ Steering time delay disturbance τ_s

• Five subjects with 2-3 trails for each disturbance

Disturbance sources

Experimental Results: Human Control Parameters

Observations

- Under disturbances, parameters k_{b1} (increasing) and τ_3 (decreasing) (steering) and k_{h1} (decreasing) (torque) change significantly
- Total steering delay $\tau_{s3} \leq 0.36$ sec (human balance delay limit)

Experimental Results: Human Balance Metrics

Observations

- Longer steering delay au_s , more difficult to balance (larger BM_1)
- More severe visual disturbance, more difficult to balance (larger BM_1)

Experimental Results: Stability Regions

Observations

- The shapes of the stability regions changes significantly with delays au_{s3}
- The changes of stable k_{b1} match the experiments
- Almost all experiments lie in the stable regions
- Longer steering delay results closer to the stability region boundary

Conclusions and Ongoing Work

Conclusions

- Developed a bikebot experimental platform to study the unstable physical human-machine interactions (pHMI)
- A physical-learning model was presented to capture the physical rider-bikebot interactions in low-dimensional space
- Analyzed balance skills and defined motor skills metrics in rider-bikebot interactions
- A neuro-balancing control model was developed and integrated with the rider-bicycle model
- Stability results were obtained and the sensitivity of the model and control parameters was found to explain the striking clinical observations
- Extensive experiments were conducted for model estimation and performance demonstration

Ongoing Work

- Conducting experiments to further refine the BEM-based metrics to quantify the balance-tracking motor skills
- Tuning and controlling human sensorimotor skills with the actuated bikebots
- Extensive pre-clinic experiments and testing with human subjects

Acknowledgments

- Partially supported by the U.S. National Science Foundations under awards CMMI-0954966 and CMMI-1334389
- Rutgers Center of Advanced Infrastructure and Transp. (CAIT)
- National Instruments Inc. for equipment donation and support
- Dr. Guang Yue of Kessler Rehabilitation Institute for collaborative support
- Professor Dezhen Song of Texas A&M University for discussions and suggestions
- Many graduate and undergraduate students in the Rutgers Robotics, Automation, and Mechatronics (RAM) Lab
- Professors Yizhai Zhang of Northwestern Polytechnical University and Tao Liu of Zhejiang University, P. R. China for helpful discussions and suggestions

Thank You!

GPDM for Human Limb Motion

• The first term $P(\mathbf{Y}|\mathbf{X}, \boldsymbol{\beta})$ is factorized as D GP regressions

$$P(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{\beta}) = \prod_{i=1}^{D} P(y_i|\boldsymbol{X},\boldsymbol{\beta}_i) = \prod_{i=1}^{D} \mathcal{N}(y_i|\boldsymbol{0}, \boldsymbol{K}_{y_i} + \sigma_{n_i}^2 \mathbf{I}),$$

where K_{y_i} is a Gaussian kernel function, W_i is a diagonal matrix, $\beta_i = \{\sigma_{f_i}, W_i, \sigma_{n_i}\}$ and $\beta = \{\beta_i\}^D$.

• The GP model to estimate the second term

$$P(\boldsymbol{X}|\boldsymbol{U},\boldsymbol{\alpha}) = \prod_{i=1}^{d} P(\boldsymbol{x}_i|\boldsymbol{U},\boldsymbol{\alpha}_i) = \prod_{i=1}^{d} \mathcal{N}(\delta \boldsymbol{x}_i|\boldsymbol{0}, \boldsymbol{K}_{x_i} + \sigma_{x_{n_i}}^2 \boldsymbol{I}),$$

where $\boldsymbol{x}_i = \{\boldsymbol{x}_i(k)\}^N$, $\delta \boldsymbol{x}_i = \{\delta x_i(k)\}^N$, $\boldsymbol{s}(k) = [\boldsymbol{x}^T(k) \ \boldsymbol{u}_h^T(k)]^T$, \boldsymbol{K}_{x_i} is a Gaussian kernel function, $\boldsymbol{\alpha}_i = \{\sigma_{x_{f_i}}, \boldsymbol{W}_{x_i}, \sigma_{x_{n_i}}\}$ and $\boldsymbol{\alpha} = \{\boldsymbol{\alpha}_i\}^d$.

GPDM: Mapping from Latent Space to Physical Space

• Given latent state x(k) and observation $T_o = \{\{x(i)\}^N, \{y(i)\}^N\}$, the physical joint angles satisfy

$$P(\boldsymbol{y}(k)|\boldsymbol{x}(k),\boldsymbol{T}_{o}) = \mathcal{N}(\boldsymbol{y}(k)|GP_{\mu}(\boldsymbol{x}(k),\boldsymbol{T}_{o}),GP_{\Sigma}(\boldsymbol{x}(k),\boldsymbol{T}_{o})),$$

where
$$GP_{\Sigma}(\boldsymbol{x}(k), \boldsymbol{T}_{o})$$
 and $GP_{\mu}(\boldsymbol{x}(k), \boldsymbol{T}_{o})$ are GPs with $\boldsymbol{k}_{*} = \sigma_{f}^{2} e^{-\frac{1}{2}(\boldsymbol{s}(k-1)-\boldsymbol{s}_{q})^{T}W(\boldsymbol{s}^{*}-\boldsymbol{s}_{p})}$.

• The Jacobians of output y(k) and the latent state (needed for EKF design) are respectively as

$$\begin{split} &\frac{\partial \boldsymbol{y}(k)}{\partial \boldsymbol{x}(k)} = \frac{\partial GP_{\mu}(\boldsymbol{x}(k), \boldsymbol{T_o})}{\partial \boldsymbol{k_*}} \frac{\partial \boldsymbol{k_*}}{\partial \boldsymbol{x}(k)}, \\ &\frac{\partial \delta \boldsymbol{x}(k)}{\partial \boldsymbol{x}(k-1)} = \frac{\partial GP_{\mu}(\boldsymbol{s}(k-1), \boldsymbol{T_p})}{\partial \boldsymbol{k_*}} \frac{\partial \boldsymbol{k_*}}{\partial \boldsymbol{x}(k-1)}, \end{split}$$

where prediction $\boldsymbol{T}_p = \{\{\boldsymbol{s}(i-1)\}^N, \{\delta \boldsymbol{x}(i)\}^N\}.$

EKF Design for Limb Pose Estimation

- Bayesian filter is used to predict the output ${m y}(k|k)$
- Instead of constant covariances, Q(k) and R(k) are updated by the GP generated by the GPDM (Lines 3 & 12)

EKF Implementation

Algorithm 2: EKF implementation
Input : $\mathbf{q}_{rt}(0 0), \mathbf{x}(0 0), \boldsymbol{\omega}_b$ and $\boldsymbol{\omega}_h$
Output : Estimates $\mathbf{q}_{rt}(k)$, $\mathbf{x}(k)$, and $\mathbf{y}(k)$
1 Initialize variance matrices $\mathbf{Q}(0), \mathbf{R}(0), \Sigma(0);$
while $k \leq N$ do
2 Update $\mathbf{v}(k k-1)$ (i.e., $[\mathbf{q}_{rt}^T \mathbf{x}^T]^T$) by (9) and (2a);
3 $\mathbf{Q}(k)_{[5:7,5:7]} = GP_{\Sigma}(\mathbf{s}_{t-1}, \mathbf{T}_p);$
$_{4} \qquad \mathbf{F} = [\mathbf{f}^{T} \ f_{1} \ \mathbf{f}_{2}^{T}]^{T}; \ \mathbf{G}(k) = \frac{\partial \mathbf{F}}{\partial \mathbf{v}} \Big _{\mathbf{v}(k-1)} \text{ with (5)};$
5 $\Sigma(k k-1) = \mathbf{G}(k)\Sigma(k-1)\mathbf{G}^{T}(k) + \mathbf{Q}(k);$
6 Update $\hat{\mathbf{z}}(k)$ with $\mathbf{v}(k k-1)$, $\mathbf{y}(k-1)$ by (10)-(12);
7 $\mathbf{M}(k) = \operatorname{GP}_{\Sigma}(\mathbf{x}(k k-1), \mathbf{T}_o);$
8 $\mathbf{H}(k) = \frac{\partial \mathbf{Z}}{\partial \mathbf{v}} \Big _{\mathbf{v}(k k-1)}; \mathbf{N}(k) = \frac{\partial \mathbf{Z}}{\partial \mathbf{y}} \Big _{\mathbf{v}(k k-1)};$
9 $\mathbf{K}(k) = \Sigma(k k-1)\mathbf{H}^{T}(k) \left[\mathbf{H}(k)\Sigma(k k-1)\mathbf{H}^{T}(k) + \right]$
$\mathbf{N}(k)\mathbf{M}(k)\mathbf{N}^{T}(k) + \mathbf{R}(k)\right]^{-1};$
10 $\mathbf{v}(k) = \mathbf{v}(k k-1) + \mathbf{K}(k)(0 - \hat{\mathbf{z}}(k));$
$\Sigma(k) = (\mathbf{I} - \mathbf{K}(k)\mathbf{H}(k))\Sigma(k k-1);$
11 $\mathbf{y}(\mathbf{k})$ =BayesianFilter $(\mathbf{v}(k), \Sigma(k), \hat{\mathbf{z}}(k));$
end
function y=BayesianFilter $(\mathbf{v}, \Sigma, \hat{\mathbf{z}})$;
12 $\hat{\mathbf{y}} = \mathbf{W}(\mathbf{v}); \mathbf{G}_w = \frac{\partial \mathbf{W}}{\partial \mathbf{v}} \Big _{\mathbf{v}}$ with (7); $\mathbf{Q}_y = \mathrm{GP}_{\mu}(\mathbf{x}, \mathbf{T}_o);$
$_{13} \ \hat{\Sigma}_w = \mathbf{G}_w \Sigma \mathbf{G}_w^T + \mathbf{Q}_y; \ \mathbf{H}_w = \frac{\partial \mathbf{z}}{\partial \mathbf{y}};$
$\mathbf{K} = \hat{\Sigma}_w \mathbf{H}_w^T (\mathbf{H}_w \hat{\Sigma}_w \mathbf{H}_w^T + \mathbf{R})^{-1};$
14 $y = \hat{y} + K(0 - \hat{z});$

Rider-Bikebot Interaction Dynamic Model

• Steering (i.e., yaw motion)

$$u_{\psi} := \ddot{\psi} = \frac{v_r \, \mathbf{c}_{\xi}}{l \, \mathbf{c}_{\varphi_b}} \sec^2 \phi \dot{\phi} + \frac{v_r \, \mathbf{c}_{\xi}}{l \, \mathbf{c}_{\varphi_b}^2} \, \mathbf{s}_{\varphi_b} \tan \phi \dot{\varphi}_b.$$

- Upper-body leaning (i.e., gravity/centripetal torques) and torque input $\boldsymbol{\tau} = [0 \ \tau_h]^T$ - Velocity control: rear wheel speed v_r
- Balance coordinates φ_b and φ_h (bikebot and human upper-body rolling angles).
 Position coordinates X, Y, ψ

Schematic of the rider-bikebot interactions model

• Balancing dynamics model (i.e., internal model)

$$m{M}(m{q})\ddot{m{q}}+m{C}(m{q},\dot{m{q}})+m{G}(m{q})=m{ au}+m{B}m{u},$$
 where $m{q}=[arphi_b\ arphi_h]^T$, control input $m{u}=[u_r\ u_\psi]^T$, $u_r=\ddot{v}_r$
Assistive Gyro-Balancer Control Design

• Closed-loop position error dynamics:

$$oldsymbol{e}_p^{(3)} + b_2 \ddot{oldsymbol{e}}_p + b_1 \dot{oldsymbol{e}}_p + b_0 oldsymbol{e}_p = oldsymbol{d}_p := oldsymbol{R}_\psi \begin{bmatrix} 0\\ u_\psi^{ ext{int}} - u_\psi^{ ext{ext}} \end{bmatrix} = oldsymbol{R}_\psi \begin{bmatrix} 0\\ d_0 \end{bmatrix}$$

 $oldsymbol{e}_p$ is driven by the difference $d_0 = u_\psi^{ ext{int}} - u_\psi^{ ext{ext}}!$

• The use of assistive gyro-balancer is to reduce $\|d_p\|$. The new steering control $\bar{u}_{\psi}^{\text{int}}$ and the gyro-balancer control u_w

$$J_t v_{\psi}^{\text{int}} = f(\varphi)w + g_{\psi}(\varphi)u_{\psi}^{\text{int}} = f(\varphi) + g_{\psi}(\varphi)\bar{u}_{\psi}^{\text{int}} + g_w u_w.$$

where $|d_0| - |\bar{d}_0| > 0$ and $\bar{d}_0 = \bar{u}_{\psi}^{\text{int}} - u_{\psi}^{\text{ext}}$.

• Considering the physical limits, the gyro-balancer-assisted controller $\bar{C}: (u_r^{\text{ext}}, \bar{u}_\psi^{\text{int}}, u_w)$ with

$$u_{w} = \operatorname{sign}(u_{w}) \min\left(\left|g_{w}^{-1}g_{\psi}(|d_{0}|-b_{\psi})\right|, \left|f_{wc}^{\pm}(\varphi_{w})\right|\right), \bar{u}_{\psi}^{\mathsf{int}} = g_{\psi}^{-1}(\varphi_{b}) \left[J_{t}v_{\psi}^{\mathsf{int}} - f(\varphi_{b}) - g_{w}u_{w}\right].$$

Assistive Gyro-Balancer Control Design

• Closed-loop position error dynamics:

$$oldsymbol{e}_p^{(3)} + b_2 \ddot{oldsymbol{e}}_p + b_1 \dot{oldsymbol{e}}_p + b_0 oldsymbol{e}_p = oldsymbol{d}_p := oldsymbol{R}_\psi \begin{bmatrix} 0\\ u_\psi^{ ext{int}} - u_\psi^{ ext{ext}} \end{bmatrix} = oldsymbol{R}_\psi \begin{bmatrix} 0\\ d_0 \end{bmatrix}$$

 $oldsymbol{e}_p$ is driven by the difference $d_0 = u_\psi^{\mathrm{int}} - u_\psi^{\mathrm{ext}}!$

• The use of assistive gyro-balancer is to reduce $\|d_p\|$. The new steering control $\bar{u}_{\psi}^{\rm int}$ and the gyro-balancer control u_w

$$J_t v_{\psi}^{\text{int}} = f(\varphi)w + g_{\psi}(\varphi)u_{\psi}^{\text{int}} = f(\varphi) + g_{\psi}(\varphi)\bar{u}_{\psi}^{\text{int}} + g_w u_w.$$

Stability and Convergence Results

- Under C and \overline{C} , the position tracking errors $e_p(t)$ and $\overline{e}_p(t)$ exponentially converge to regions near the origin.
- $\|e_p(t)\| \le e_p^b(t)$ and $\|\bar{e}_p(t)\| \le \bar{e}_p^b(t)$, then $\bar{e}_p^b(t) \le e_p^b(t)$, for $\forall t \ge t_a$

Stability Analysis for the EIC Design

Closed loop errors dynamics:

$$\boldsymbol{e}_{p}^{(3)} + b_{2} \ddot{\boldsymbol{e}}_{p} + b_{1} \dot{\boldsymbol{e}}_{p} + b_{0} \boldsymbol{e}_{p} = \boldsymbol{R}_{\psi} \begin{bmatrix} p_{p}' \\ 0 \end{bmatrix} =: \boldsymbol{p}_{p}, \qquad (2)$$

$$\ddot{\boldsymbol{e}}_q + a_1 \dot{\boldsymbol{e}}_q + a_2 \boldsymbol{e}_q = \boldsymbol{p}_q. \tag{3}$$

Driving disturbances:

$$p'_{p} = p_{p}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}, \boldsymbol{q}_{e}) = \left(\boldsymbol{B}_{\tau}^{-1}(\boldsymbol{q}_{e}) \left[\boldsymbol{C}_{q}(\boldsymbol{q}_{e}) - \boldsymbol{G}(\boldsymbol{q}_{e})\right]\right)_{1} \\ - \left(\boldsymbol{B}_{\tau}^{-1}(\boldsymbol{q}) \left[\boldsymbol{M}(\boldsymbol{q})\ddot{\boldsymbol{q}} + C_{q}(\boldsymbol{q}, \dot{\boldsymbol{q}}) + \boldsymbol{G}(\boldsymbol{q})\right]\right)_{1}, \\ \boldsymbol{p}_{q} = \ddot{\boldsymbol{q}}_{e} - \bar{L}_{\boldsymbol{N}_{\text{ext}}}^{2}\boldsymbol{q}_{e} + a_{1}(\dot{\boldsymbol{q}}_{e} - \bar{L}_{\boldsymbol{N}_{\text{ext}}}\boldsymbol{q}_{e}).$$
(4)

with the boundaries

$$\begin{aligned} \|\boldsymbol{p}_p\|_2 &\leq c_1 + c_2 \|\boldsymbol{e}_1\|_2 + c_3 \|\boldsymbol{e}_2\|_2, \\ \|\boldsymbol{p}_q\|_2 &\leq c_4 + c_5 \|\boldsymbol{e}_1\|_2 + c_6 \|\boldsymbol{e}_2\|_2. \end{aligned}$$

Stability analysis for EIC design (cont'd)

For the feedback linearized dynamics matrices

$$\boldsymbol{A}_{p} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -b_{0} & -b_{1} & -b_{2} \end{bmatrix}, \ \boldsymbol{A}_{q} = \begin{bmatrix} 0 & 1 \\ -a_{1} & -a_{0} \end{bmatrix}.$$
(5)

and for given positive definite symmetric matrices Q_p and Q_q , we can find out $M_p \in \mathbb{R}^{3 imes 3}$ and $M_q \in \mathbb{R}^{2 imes 2}$ such that

$$\boldsymbol{M}_{p}\boldsymbol{A}_{p}+\boldsymbol{A}_{p}^{T}\boldsymbol{M}_{p}=-\boldsymbol{Q}_{p},\,\boldsymbol{M}_{q}\boldsymbol{A}_{q}+\boldsymbol{A}_{q}^{T}\boldsymbol{M}_{q}=-\boldsymbol{Q}_{q}.$$

We consider the Lyapunov function candidate

$$V = \boldsymbol{e}_1^T \boldsymbol{M}_1 \boldsymbol{e}_1 + \boldsymbol{e}_2^T \boldsymbol{M}_2 \boldsymbol{e}_2, \tag{6}$$

with $M_1 = diag(M_p, M_p)$ and $M_2 = diag(M_q, M_q)$.

Stability analysis for EIC design (cont'd)

For any given positive $d_1, d_2 > 0$, we have

$$\dot{V} \leq -\left(\eta_1 - \frac{\alpha_p^2 c_1^2}{d_1}\right) \|\boldsymbol{e}_1\|_2^2 - \left(\eta_2 - \frac{\alpha_q^2 c_4^2}{d_2}\right) \|\boldsymbol{e}_2\|_2^2 + d_1 + d_1,$$

with
$$\eta_1 = \beta_p - 2\alpha_p c_2 - \alpha_p c_3 - \alpha_q c_5$$
 and
 $\eta_2 = \beta_q - 2\alpha_q c_6 - \alpha_p c_3 - \alpha_q c_5$.
Therefore, if existing $\eta_1 > \alpha_p^2 c_1^2/d_1$, $\eta_2 > \alpha_q^2 c_4^2/d_2$, as $t \to \infty$,
 $V = \boldsymbol{e}_1^T(t) \boldsymbol{M}_1 \boldsymbol{e}_1(t) + \boldsymbol{e}_2^T(t) \boldsymbol{M}_2 \boldsymbol{e}_2(t) \leq b$, with

$$b := \arg_{k>0} \sup \{k = V(e_1, e_2), (e_1, e_2) \in \Omega^*\}.$$

and the bounded closed set

$$\Omega^* = \left\{ (\boldsymbol{e}_1, \boldsymbol{e}_2) : \left(\eta_1 - \alpha_p^2 c_1^2 / d_1 \right) \| \boldsymbol{e}_1 \|_2^2 + \left(\eta_2 - \alpha_q^2 c_4^2 / d_2 \right) \| \boldsymbol{e}_2 \|_2^2 = d_1 + d_2 \right\}$$